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I. INTRODUCTION 

 
Structural control mechanisms for buildings fitted with dissipators have been evolving for quite some time and can 
be divided into three categories [8]: passive, semi-active, and active controls. Recently, structures using passive 
Viscous Fluid Dampers (VFD) have been developed [4][5][6][7], as VFDs significantly reduce the dynamic 
response of the building. However, these papers analyze the dynamic behaviors of a structure with VFDs using the 
shear frame model (SF), which assumes that the beams of a structure are perfectly rigid, with infinite axial and 
flexural stiffness. This assumption stems from viewing the slab and beam at each floor of a building as a dependent 
mass. As a result, SF is not suitable for large span structures. To address this issue, the General Approach model 
(GA) is introduced [2], which disregards axial deformation in both beams and columns and neglects shear 
deformation in beams. In GA, the columns of each story still have the same lateral displacement (Fig. 2), while the 
beams’ flexural stiffness, which contributes to the lateral stiffness of a structure, is still considered. Furthermore, GA 
uses fewer degrees of freedom than FEM, which is beneficial for analyzing soil-structure interaction problems that 
require substantial resources to represent building motion for computation. Ultimately, the dynamic responses of a 
structure retrofitted with VFDs using GA provide a more thoughtful evaluation of the effectiveness of VFDs in 
reducing response. This finding also lays the groundwork for further research on structures equipped with various 
types of dissipators, including friction dampers, variable stiffness dampers, and Magneto Rheological Dampers. 
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Abstract- This paper introduces a General Approach model and an associated numerical method with its algorithm to examine 
the seismic responses of a structure fitted with viscous fluid dampers (VFD) under dynamic loads. This method considers the 
stiffness matrix of the beam, leading to a reduction in the lateral frame’s stiffness matrix value. The numerical examples used 
are steel structures facing benchmark problems, subjected to a horizontal seismic load to present comparative response results 
in scenarios including the Shear Frame model (SF), General Approach model (GA), and Finite Element model (FE). A ratio is 
introduced that compares the flexural stiffness of the beam to that of the column to estimate the change from GA modal to SF 
modal. The conclusions drawn from these examples offer a more precise evaluation of response reduction for such a building. 
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II. THE DIFFERENTIAL EQUATION GOVERNING THE MOTION OF A STRUCTURE EQUIPPED WITH VFD USING GENERAL APPROACH 
II.1. COMPUTATIONAL MODEL 

Fig. 1:  Mathematical model of a structure retrofitted with 
VFD subjected to external dynamic forces 

Fig. 2. Degrees of freedom (DOFs) of a structure 

Consider the m-bay, n-story planar two-dimensional frame shown in Fig. 1. The structure is equipped with mn 

VFDs at each of the portals. The excitation consists of lateral forces Pi at the n floor levels  1,i m  and horizontal 

ground motion gx  due to an earthquake. The story height is  1,jH j n  and the bay width Li. The flexural 

rigidities of uniform beams and columns are ,
b
i jEI  and ,

c
i jEI  respectively; mj is the total mass of the jth level. In 

Finite Element model [1] a node in 2D frame has three DOFs including two translations (x,y components) and one 
rotations (about z axis). For simple and on purpose of neglecting the axial deformation in the columns and beams of 
a frame, the General Approach [2] is introduced. It is a m-bay, n-story frame having n(m+1) nodes and n(m+2) 
DOFs (Fig. 2). For beam and column elements, their deformations are illustrated in Fig.3 and Fig. 4. Consequently, 
their internal element forces including bending moments and shears at the ends.  

 

Fig. 3:  A typical uniform beam element 

 

Fig. 4. A typical uniform column element 
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Fig. 5. a VFD element 
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Using the beams and columns’ internal forces in this static equilibrium, the stiffness matrices in a typical beam 

element (with respect to the displacement vector    1 2, ,
T T

a bu u   ) and column element (with respect to the 

displacement vector    1 2 3 4, , , , , ,
T T

a b a bu u u u u u   ) are respectively written as 
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In shear frame model of a structure, a displacement vector is only two transverse displacements and therefore its 

corresponding stiffness matrix is   3

1 112

1

e
cEI

symH

 
  

 
e
c SF

K  (5) 

Labeling global DOFs as      1 2 1 2 1,1 2,12 1, ,..., , ,..., , , ,...,
T

n nm

T

n mu u u x x x       lead to a global stiffness matrix by 
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K
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 (6) where n nK  - a stiffness matrix involving transverse displacements, 

( 1) ( 1)n m n m  K  - a stiffness matrix related to rotation displacements,  1n n m K  and  1n m n K  - the stiffness matrix 

considering the effect of transverse displacements on rotational displacements and vice versa. The subscripts denote 
their dimensions. 
A global mass matrix of the structure can be determined by one of the two procedures [2] 
 Ignoring the rotational inertia (or the pure transverse inertia), the lumped-mass element matrix of a beam is 

reduced as 
0 0

0 0

 
  
 

e
bM  (7) in which ma and mb are the concentrated masses of a beam element at its ends a and b. 

For a beam at the jth story, its ma and mb are calculated as 

1
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L
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
. Although the rotational inertia of a 

beam is not taken into account, e
bM  is existed as a result of a global mass matrix assembly, and the consistent-mass 

element matrix of a column (with respect to    1 2, ,
T T

a bu u u u ) is reduced as 
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e
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e
cM  (8) where 

e
cm  - distributed mass in a column element. 

And then assemble column’s mass matrices into the global mass matrix which can be written in the matrix form as 
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 (9) where  1n m 0 ,  1m n 0 , and ( 1) ( 1)n m n m  0  are zero matrices. 
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 (10) is a diagonal matrix. 

 Allowing for the rotational inertia of beams and columns, the beam and column consistent mass matrices are 

taken as 
3 4 3
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e
b cm  - distributed mass 

in a beam/column element; and subsequently assemble the element mass matrices into the global consistent mass 

matrix which can be written in the matrix form as 
 
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 (13) in which ( 1) ( 1)n m n m  M is 

a mass matrix indicating rotational inertia and evaluated by element’s mass matrices due to rotation at nodes.  
The differential equation governing the motion of the structure is expressed in the form as 

gl lumped VFDuMu + Cu + Ku = P M F   (14) where the mass matrix M is either Mlumped or Mconsitent; C – the 

damping matrix of the structure computed by using the Raleigh damping fomula as [2]; 0 1a a C M K  with 

   
0 12 2 2 2

2 2
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a a  (15) where the coefficients a0 and a1 are functions of damping 
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ratios i and j for the ith and jth modes. Obviously this linear damping matrix C has the same matrix form of K and 

M as 
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where  1 1 2 1,..., ,...,
TVFD VFD VFD VFD VFD

n j j nF F F F F   VFDF in which  1,VFD
jF j n  is a horizontal total force in VFD at 

the jth story and determined as  max max
1 1sign

jVFD VFD
j j j j j j j jF F C x x x x F
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  and 

 0.5 1.2j    are coefficients and set up VFD in advance;  1j jx x    is interstory velocity; and VFD
jF  is the 

damper force at the jth story. This value does not exceed the maximum damper force max
jF , a value obtainable from 

VFD manufactors. 
The dynamics internal forces of a beam element are caused by rotational dynamic responses at its two ends 
including displacements, velocities, and accelerations determined as e e e e e e eF = M u + C u + K u   (18) where the value 

of eM  depends on either ignoring or allowing for the rotational inertia. 

For instant, neglecting the rotational inertia, its shear forces and moments at the two ends of an element are  
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Allowing for the rotational inertia, then its shear forces and moments of an element are  
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II.2. THE REDUCTION OF LATERAL STIFFNESS CAUSED BY ROTATIONAL STIFFNESS 
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Fig. 6.: A single-portal frame 

To analyze the effect of rational stiffness on lateral stiffness, consider a 
single-portal frame with its dimensions shown in Fig. 6. Ignoring the 
rotational inertia of a node and structural damping, the equation of motion 
(14) is rewritten as  
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The equation (24) indicates that the lateral stiffness is cut by    
1
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
     K K K  compared with no 

consideration to rotational stiffness. For the frame in the Fig consisting of one lateral and two displacements, a 

global stiffness matrix having 33 dimension is  
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And an equivalent lateral-stiffness matrix of a single portal frame is 
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From this analysis and neglecting the rotational inertia, the equation Error! Reference source not found. can be 

rewritten in more simple matrix form as 
    

1 1 1 1 1 g 1

1
( 1) ( 1) 11 1 1

ˆ ln n n n n n n n n n n n n n

n m n m nn m m n

x         


      





 

  VFDx

θ K K x

M x + C + K x = P M F 
 (26) 

The equation (25) has a form as a shear frame model, a system with rigid beams or no rotation at beam’s ends. 
Correspondingly, the equation (26) is very helpful to lessen computation time cost for a frame having hundreds of 
nodes or in virtual of decreasing DOFs from n(m+2) to n. The numerical results of the equation (14) (allowing for 
the rotational inertia at nodes) and (26) (neglecting the rotational inertia at nodes) are compared in the numerical 
example hereafter.  

II.3.  COMPUTATIONAL ALGORITHM FOR THE SOLUTION OF MOTION EQUATION 
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Due mosty to damper forces generated from VFD, the equation 
(14) is resolved by using the Newmark method, a numerical 
method modified in time domain. The time domain is given by a 
set of discrete values t which are ususally taken to be constant. 
The response is determined at the discrete time instants ti. 
Accordingly the displacement, velocity, and acceleration of a 
structure at the time ti are denoted as , ,i i iu u u   respectively. The 

response quantities at the time instants ti+1 depend on not only 
applied loads but also the preceding quantities at the time i. In the 
time series data after assembling, the numerical procedures of a 
structure added with VFD  (14) is presented in Fig. 7. This paper 
uses the MATLAB routine to solve the equation (14) following this 
flowchart. Solving the differential equation (26) is similar to (14), 
in which unknowns u,u,u   are replaced with x, x,x   first and 

unknows  is successively computed using x. 

 

Fig. 7. Algorithm of a typical time interval (ti+1-ti) 
 
 

II. NUMERICAL EXAMPLES 
 

III.2. A NINE-STORY BUILDING OF BENCHMARK PROBLEMS 

 

 
Fig. 8: A benchmark 9-story building 

Table 1. The dynamic properties of the 9-story building 
 

jth 
floor 

Column 
section 

beam 
section  310

jm

kg
 

 
j jW m g

kN


 

floor 
level 

 jZ m  

1st  W14x500 W36x160 202.0 1981.6 5.49 
2nd  W14x455 W36x160 197.8 1940.4 9.45 
3rd  W14x455 W36x135 197.8 1940.4 13.41 
4th  W14x370 W36x135 197.8 1940.4 17.37 
5th  W14x370 W36x135 197.8 1940.4 21.33 
6th  W14x283 W36x135 197.8 1940.4 25.29 
7th W14x283 W30x99 197.8 1940.4 29.25 
8th  W14x257 W27x84 197.8 1940.4 33.21 
9th  W14x257 W24x68 214.0 2099.3 37.17 
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So as to demonstrate seismic response of a structure effectively controlled with VFD, the 9-story steel building, one 
of the benchmark problems [8], is utilized with E=2.104kN/cm2, damping ratios for two first mode 1=2=2%, and 
yield strength y=345MPa. Its dynamic properties are given in Table 1. The weight at the jth floor is j jW m g  with 

the gravitational acceleration 29.81mg
s

 . The degree of freedoms and nodes of structure eliminated with 

boundary condition are ndof=71 and nnode=54, respectively. The first three natural periods of the structure are 

1 1.2865T s ; 2 0.4880T s ; 3 0.2839T s . The ElCentro earthquake excitation along the x axis and with peak 

ground acceleration (PGA) of  
max

0.35gx g  [3] does not include rotation acceleration about the z axis ( 0g  ). 

Analysis duration is 35 seconds or nt=28001 and time intervals t=0.00125 second. The response of the structure 
are analysized in cases as (A)NCT – the non-controlled structure analyzed with SF model; (A)VFD - the VFD 
controlled structure analyzed by using SF; (B)NCT - the non-controlled structure analyzed by using GA and 
neglecting its rotational inertia; (B)VFD - the VFD controlled structure analyzed by using (B); C)NCT - the non-
controlled structure analyzed with GA and allowing for its rotational inertia; (C)VFD - the VFD controlled structure 
analyzed by using (C); (D)NCT - the non-controlled structure analyzed by using SAP2000 (Structural Analysis 

Program) with modal response analysis. VFD controlling properties of floors are 

,max

.
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0.9
1,9

300

VFD
j j

j

VFD
j

C h c
h

j
f kN



 
        



 with cj 

are coefficients in lateral damping matrix n nC . Displacement and acceleration errors in (B) compared to (C) are 

determined as  

 

 

28001 2(B) (C)
, ,9

1

1

28001 2(C)
,9

1

1

% 100
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nt
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u u
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












 







 (27) 

 
 

Table 2. Errors of the pairwise cases 
 

 (B)NCT vs (C)NCT (C)NCT vs (D)NCT (B)VFD vs (C)VFD 
Displacement 1.39% 3.40% 1.02% 
Acceleration  7.35% 17.27% 1.88% 
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Fig. 9. Story drift response without VFD 
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Fig. 10: Story drift response with VFD 0 5 10 15 20 25 30 35
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Fig. 11: Top acceleration response 

without VFD 
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Fig. 12. Top acceleration response with 

VFD 
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Fig. 13. Moment at the end a of the 2nd 

column 
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Fig. 14. Shear force at the end a of the 

2nd column 
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Fig. 15. VFD force of the 1st story 
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Fig. 16. Hysteretic loop 
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Fig. 17. Maximum story drift  
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Fig. 18. Ratio of maximun story drift to 

its height 
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Fig. 19. Ratio of columns’ maximum 

shear forces at 2-axis to its weight 
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Fig. 20. Dynamic reduction using the 

case (A)VFD (j=0.9) 

 



Pham Nhan Hoa      9 

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

 Reduction (%)

 j
th

 f
lo

o
r

 
Fig. 21.Dynamic reduction using the case 

(C)VFD (j=0.9) 
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Fig. 22. Dynamic reduction using the 

case (A)VFD (j=1.0) 
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Fig. 23. Dynamic reduction using the 

case (C)VFD (j=1.0) 
The reliable numerical method proposed in the paper is illustrated according to Table 2 and Fig. 9, Fig. 10, Fig. 11, 
and Fig. 12. Displacement and acceleration errors in pairwise cases (B) and (C) are insignificant, that is, kinetic 
energy of rotational motion slightly contributes to kinetic energy of the system. Therefore, (B) rather than (C) is 
used for dynamic analysis of a VFD structure in efforts to reduce amounts of computation in the proposed numerical 
method. Displacement error of pairwise cases (C) and (D) is unimportant while acceleration error reaches 17.3%. 
The leading cause is that (C) uses linear acceleration approximated in Time-NewMark Method while (D) uses 
Modal Response analysis. Because column moment M at the 1st floor is completely lower than plastic moment Mp 

(Fig. 13) and story drift 9 9/ 1 / 300x Z  [9], the first-order analysis in proposed theorical model is acceptable.  

With respect to (A), the lateral stiffness of the 9-story structure results from the lateral stiffness of the columns and 
is not diminished by beams’ flexural stiffness. Hence, the structure in (A) is stiffer and its lateral displacements is 
always lower and its lateral accelerations is greater than in (C).  
In (C) the structure added with VFD using ratio of only max/ 1VFD VFDf f  compared to max/ 9.26VFDSF f  has got the 

maximum displacement reduction of 58%, thanks to increasing lateral force resistance for structures. This result 
demonstrates the capacity of response reduction for structures retrofitted with VFD. Furthermore, VFD capacity is 
higher in a case of decreasing  (Fig. 21 and Fig. 23). (C)VFD is more sophisticated method than (A)VFD and 
therefore give higher reliability of VFD usefulness.  
Analyzing results show that decreasing  is the cause of increasing acceleration response or negative reduction (Fig. 
20 at the 6th and 7th floors). The more effective in reducing response is obtained as higher max

VFDf , thanks to bigger 

hysteretic loop (Fg. 16). 
IV. CONCLUSION 

This paper explores the dynamic behavior of structures fitted with Viscous Fluid Dampers (VFD) with the goal of 
withstanding seismic loads. A computational model, along with a modified Time-NewMark algorithm, is introduced 
to determine the dynamic behaviors of structures equipped with VFD. Two steel structures are used in the numerical 
example to validate the proposed numerical method and compare their dynamic responses using three different 
approaches: (1) Shear Frame model, (2) General Approach model that either disregards or accounts for rotational 
inertia, and (3) Finite Element model using the Structural Analysis Program 2000. In the General Approach, treating 
slabs, not beams, as rigid bodies results in more accurate dynamic responses than in the Shear Frame model, leading 
to a more precise evaluation of the effectiveness of the VFD structure. When structures are subjected to more intense 
seismic excitation, the maximum damping force in the VFD should be increased to achieve the desired reduction, 
rather than adjusting their damping coefficient and exponential parameters. 
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