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I. INTRODUCTION 

Consciousness encompasses various levels of awareness and cognitive processing, ranging from wakefulness to 
deep coma. In the spectrum of Disorders of Consciousness (DOC), coma represents the lowest level of consciousness. 
Assessing consciousness levels is crucial in clinical practice, especially for patients with severe neurological 
conditions. EEG has emerged as a valuable tool for assessing consciousness due to its non-invasive nature and ability 
to capture brain dynamics. In recent years, EEG-based consciousness assessment has gained attention, with numerous 
studies focusing on evaluating consciousness levels using EEG signals [1-3]. While EEG has shown promise, existing 
methods have limitations. Traditional approaches often rely on visual inspection or simplistic frequency band 
analysis, lacking sensitivity to subtle changes in consciousness. Additionally, the complexity of brain activity calls for 
advanced computational techniques. Accurately assessing consciousness is particularly vital in cases of compromised 
neurological function, such as brain death. Current methods for determining brain death can be time-consuming and 
carry risks [4-9]. 

To address these challenges, it is necessary to develop a system that enables the assessment of consciousness 
levels. In this context, we propose an EEG-based real-time diagnostic system that allows for the continuous 
observation and analysis of EEG changes [10]. Our designed system integrates the methods of Turning Tangent 
Empirical Mode Decomposition (TTEMD) [11] and Approximate Entropy (ApEn) [12, 13] for real-time analysis of 
EEG. TTEMD allows for precise analysis of energy distribution in different frequency bands, while ApEn measures 
the irregularity of the signal, providing valuable insights into the complexity of EEG signals. However, the limitations 
of existing systems lie in their heavy reliance on manual assessment, leading to a significant presence of subjective 
judgments in the evaluation process. This may hinder their practicality in clinical settings. To address these 
limitations and harness the potential of machine learning, we have developed a new system using a portable EEG 
device, combining the previously separate calculation algorithms. This integration enables more accurate diagnostics 
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Abstract- Assessing the level of consciousness is a critical task in clinical practice, especially for patients with 
traumatic brain injuries or those in a coma or vegetative state. Traditional methods like the Glasgow Coma Scale 
have limitations, such as inter-observer variability and low sensitivity. In recent years, electroencephalography 
(EEG) has emerged as a promising approach for assessing consciousness, offering non-invasive, real-time 
monitoring of brain activity. n this study, we propose a real-time analysis system for assessing consciousness levels 
using a portable EEG device. By analyzing EEG signals, our system provides valuable insights into consciousness 
levels, enabling prompt clinical interventions. The real-time nature of our system allows for continuous 
monitoring and immediate assessment of consciousness levels. Compared to traditional methods, our system offers 
advantages in terms of real-time functionality, providing a comprehensive evaluation of consciousness. Through 
extensive experiments using real patient data, our system demonstrates its value as a valuable tool for assessing 
consciousness levels in clinical practice. It offers healthcare professionals an efficient and reliable method for 
evaluating consciousness. 
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and enhances the system's practicality in clinical environments. Our objective is to compute six sets of values (a total 
of twelve features) representing the energy and complexity of the EEG signals for each of the six channels using 
TTEMD and ApEn. Subsequently, we will employ a Support Vector Machine (SVM) classifier to integrate these 
twelve features together and enhance the diagnostic accuracy. Through extensive experimentation and evaluation, we 
have demonstrated the effectiveness and reliability of our enhanced system. The integration of the new method, along 
with the real-time capability of our system, provides a more accurate and efficient tool for assessing consciousness 
levels. 

Our system has been tested on diverse patient data, showcasing accurate assessment of consciousness levels. The 
real-time feedback empowers healthcare professionals, facilitating prompt diagnosis, treatment, and management of 
patients with impaired consciousness. In conclusion, our study presents a novel real-time analysis system that 
combines TTEMD and ApEn algorithms for evaluating consciousness levels. The integration of these algorithms, 
along with real-time capability, offers an effective and efficient tool for assessing consciousness in clinical practice. 
Our system holds great potential for enhancing patient care in cases of impaired consciousness, improving clinical 
practice, and aiding in brain death diagnosis. 

II. METHODOLOGY AND SYSTEM DESIGN 

A.  The algorithm and principle – 

Previous studies have shown that Signal decomposition methods based on the features of data, such as empirical 
mode decomposition (EMD) [14,15], multivariate empirical mode decomposition (MEMD) [16], and TTEMD [17], 
can be used to analyze patients' EEG energy. These methods have been shown to be effective in analyzing EEG 
signals and can provide valuable insights into the level of consciousness of a patient. Previous studies have compared 
EMD, MEMD, and 2T-EMD, with experiments based on standard artificial signals and patient EEG [18]. In the 
comparison of algorithm principles, the differences among the three algorithms lie in the channel type and the 
calculation of local means of the raw signals. Experimental results based on 80 sets of artificial signals with a 
frequency range of 0~40Hz showed that 2T-EMD has the best overall computational performance in terms of 
calculation speed and signal representation accuracy.  

TTEMD is a modified version of EMD, TTEMD overcomes the mode mixing problem of EMD by using a turning 
tangent criterion to guide the sifting process, resulting in better decomposition performance. Given the advantages 
and limitations of the various signal processing algorithms available for EEG analysis, the present system has opted 
for the TTEMD as the primary method. The TTEMD algorithm provides a way to decompose signals that have 
multiple channels without the need for projections. This is achieved through the computation of the signal mean 
envelope and the re-definition of the signal mean trend, which is calculated by interpolating between barycenter of 
elementary oscillations [19]. By using this approach, TTEMD can effectively identify local features of the signal and 
decompose it into a finite set of components, making it a powerful tool for time-frequency analysis of nonlinear and 
non-stationary signals. The TTEMD algorithm can be summarized as follows: 

Let's consider a function  belonging to the class , implying its differentiability and possession of a 
continuous first derivative. The tangent vector to function  is denoted as . For any given point t in the real 
numbers ( ), the value  can be understood as the Euclidean inner product of , represented by , 
between the tangents to  just before and after the point . Here,  represents the dimension. Notably,  
reaches its maximum at a specific point  when both vectors  and  are collinear, indicating a 
consistent direction and smooth transition of the tangents. Moreover, the continuity of the inner product 
operation ensures the preservation of this property. we have  

 

An oscillation extremum of function  is defined as a local minimum of the function . According to Equation 
(1), it also corresponds to a local minimum of the following function: 

 

Consider two consecutive oscillation extrema represented by points  and . The 
barycentre, denoted as , of the corresponding elementary oscillation can be calculated as follows: 
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After obtaining the IMFs, the frequency domain of the IMFs is obtained using Fast Fourier Transform (FFT). The 
energy of each IMF is then calculated by summing the squared magnitudes of its frequency components. The EEG 
energy of each frequency band was obtained by summing the energies of the IMFs within that band. The specific 
calculation process is shown in Figure 1 below. 

 

Figure 1.  TTEMD computation flowchart 
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The ApEn algorithm measures the irregularity or complexity of a time series. It calculates the logarithmic 
likelihood that subseries that are close in amplitude will remain close on the next incremental comparison. A smaller 
ApEn value indicates a more regular and predictable time series, while a larger ApEn value indicates a more irregular 
and unpredictable time series. 

The basic idea of ApEn is to quantify the predictability of a time series by comparing the similarity between 
patterns of data within the series. It is calculated by counting the number of times that a pattern repeats itself within a 
given tolerance window. The ApEn algorithm can be expressed using the following simplified mathematical formula: 

 

where  is the ApEn value for a given time series with length , tolerance level , and pattern length ; 
 and  are the number of pattern matches of length  and  that are similar within the 

tolerance level . 

To calculate , first, a vector of the data points with length $m$ is created by selecting sequential data 
points from the time series. The Euclidean distance between each pair of vectors is then calculated, and if the distance 
is less than or equal to the tolerance level , the vectors are considered similar. The number of similar vectors is then 
counted and divided by the total number of vectors, resulting in the probability . The same procedure is 
repeated for pattern length  to calculate . 

The ApEn value ranges from 0 to infinity, with lower values indicating higher regularity or predictability in the 
time series. A commonly used threshold value for distinguishing between regular and irregular time series is 0.2. 

B. System Composition – 

The system composition for the proposed experiment consists of an OpenBCI Cyton board and a personal 
computer (PC) equipped with Python programming environment. Python was selected as the programming language 
due to its versatility, ease of use, and availability of various open-source libraries for signal processing and data 
analysis. The OpenBCI Cyton board is a versatile and affordable biosensing device that can record multiple channels 
of EEG signals with high accuracy and low noise. It consists of eight channels that can be connected to different 
electrode configurations. The equipment used is shown in Figure 2 below. 

 
Figure 2.  Experimental USB Dongle and an OpenBCI Cyton board with 4 dry batteries  



Jingming Gong, Linfeng Sui, Ran Zhang, Boning Li, Chengyuan Shen, Jianting CAO  9 
 

The OpenBCI Cyton board was used to collect EEG signals from six electrodes: F7, F8, F3, F4, Fp1, and Fp2, as 
well as one ground electrode (GND) and one reference electrode (A2) that were placed on the forehead and earlobe, 
respectively. 

The recorded EEG signals were transmitted from the OpenBCI Cyton board to the PC via a dongle. The PC was 
used to receive and process the EEG signals in real-time using Python scripts. The Python environment was 
configured to include necessary libraries for signal processing, such as NumPy, SciPy, and Matplotlib. The TTEMD 
and ApEn algorithms were implemented in Python scripts to extract relevant features from the EEG signals. The 
extracted features were then used to classify the consciousness level of the subject in real-time. The system 
architecture is shown in Figure 3. 

 
Figure 3.  System structure diagram  

In the specific geographical region where the study was conducted (Saitama Prefecture in this case), a common 
source of interference in the EEG signals is the 50Hz power line frequency. It is important to note that power line 
frequencies can vary between different regions, and in some areas, such as North America, the power line frequency 
is typically 60Hz. 

To address the 50Hz power line interference in the EEG signals, a notch filter was implemented in the system. 
The notch filter specifically targets and suppresses the 50Hz frequency, effectively removing the interference caused 
by the power grid. This ensures that the acquired EEG signals are cleaner and more reliable for subsequent analysis 
and interpretation. In the study, the system was configured to analyze the frequency range of 0.5-40 Hz, which covers 
the commonly observed frequency bands in the analysis of patient's brain waves. These frequency bands are 
associated with specific types of brain wave activities. 

C. A System for EEG Energy and Complexity Calculation based on TTEMD and ApEn 

The TTEMD algorithm introduces a controllable parameter  representing the length of a time window, as 
depicted in Figure 4. In this experiment,  is set to 1 second (250Hz). To achieve this, we have designed a loop that 
processes and stores EEG data with an increment of  Simultaneously, by sliding the time window and time step, 
we apply the TTEMD and ApEn algorithms to analyze the EEG data, enabling the extraction of temporal distributions 
of brainwave energy and dynamic complexity. 

The system retrieves EEG data from the initial window and subsequently applies the TTEMD algorithm to 
decompose the EEG data within the window, resulting in a series of IMFs. The system then utilizes the ApEn 
algorithm to calculate the complexity of each IMF. Next, the system computes the energy distribution and complexity 
distribution for each IMF. Upon completing the processing of the current window, the system stores the results, 
generates visual representations, and shifts the window to the next position. 
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Figure 4.  Flowchart of sliding window computation of TTEMD and ApEn 

D. Statistical Analysis 

The system consists of two modes: online and offline.  The online mode is used for real-time analysis of EEG 
energy and assessment of consciousness level.  The offline mode enables us to analyze existing data.  The online 
mode is particularly useful for continuous monitoring of a patient's consciousness level during surgery or other 
medical procedures, while the offline mode allows for in-depth analysis of the data collected during the online mode.  
The use of both modes provides a comprehensive approach to the assessment of consciousness level and can help 
medical professionals make more informed decisions regarding patient care. Figure 5 below shows the Graphical 
User Interface (GUI) of the system. 
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Figure 5.  GUI of the system. 

The data used in this study was obtained from patients with either brain death or coma in the Intensive Care Unit 
(ICU) at a hospital in Shanghai, China. The study was approved by the hospital's ethics committee and informed 
consent was obtained from the patients' families. The data acquisition process involved recording the EEG signals 
directly at the patients' bedside using a clinical EEG system with an international 10-20 electrode placement. The 
included 6 channels (F7, F8, F3, F4, Fp1, Fp2) and one ground electrode (GND) that was also placed on the forehead, 
and the remaining two electrodes (A1, A2) which were reference electrodes that were placed on the earlobes. This 
configuration allowed for the recording of EEG signals with high spatial resolution and low noise interference. a 
sampling rate of 1000 Hz with electrode impedances kept below 8 KΩ. 

After obtaining the EEG signals from the subjects, the first step in analyzing the signals is to preprocess them. In 
our study, we used a bandpass filter to extract the frequency range of interest, which is from 0.5 Hz to 40 Hz. This 
range covers the typical EEG frequency bands: delta, theta, alpha, beta, and gamma. 

In this study, we analyze the EEG energy and ApEn results obtained from offline analysis of EEG data collected 
from 10 patients diagnosed with brain death and 10 patients with coma. The results showed clear differences between 
the two groups, indicating that the proposed real-time analysis system has the potential to effectively assess the 
consciousness level of patients. as shown in Figures 6 and 7. The results clearly indicate significant differences 
between the two groups. In particular, the EEG energy levels of brain death patients were found to be significantly 
lower than those of coma patients, while the ApEn values were higher for brain death patients.  
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Figure 6.  EEG Energy Analysis Results for Comatose and Brain Death 

 

Figure 7.  ApEn Analysis Results for Comatose and Brain Death 

Figure 8 displays the results of offline data analysis obtained from a patient who transitioned from a state of deep 
coma to brain death. The figure highlights the notable differences in brainwave energy and ApEn between the states 
of deep coma and brain death. 

The observed disparities in brainwave energy and ApEn values provide valuable insights into the distinctive 
characteristics of these two states. The data analysis reveals a significant decrease in brainwave energy and an altered 
pattern of complexity as the patient progresses from deep coma to brain death. These findings contribute to our 
understanding of the physiological changes associated with the transition from deep coma to brain death. They 
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underscore the potential of brainwave energy and ApEn as quantitative measures for assessing the level of 
consciousness and differentiating between these critical states.  

Our real-time EEG-based system leverages the TTEMD and ApEn algorithms to extract energy and complexity 
measures from EEG data, which are then fed into our meticulously trained SVM model. The model is trained using a 
wealth of EEG data labeled as "coma" and "brain death". Once the model is trained, it is run with a large volume of 
new EEG data and the predictive scores it generates for the brain states — coma or brain death — are recorded. We 
then perform statistical analyses on these predictive scores, which allows us to establish the positions of the two 
standard lines representing coma and brain death states in the GUI. When new EEG data is processed in the system, 
we can differentiate and compare coma and brain death states more effectively. The advantage of this approach lies in 
its provision of a clear, intuitive visualization that aids healthcare professionals in determining whether a patient's 
condition aligns more closely with a coma or brain death. The system offers an enhanced, holistic interpretation of a 
patient's neurological condition in real-time, facilitating informed and timely decision-making, thereby contributing to 
improved patient management. 

It is noteworthy that during the real-time recording process of EEG, we often encounter issues such as channel 
signal loss, excessive noise, and high amplitude fluctuations. To mitigate these problems, we have implemented a 
threshold setting in our system. This enables automatic detection and discarding of problematic data. Correspondingly, 
an 'X' indicator is displayed on the GUI whenever such data is discarded. The threshold setting also allows for the 
preservation of data that has relatively less impact on the system's accuracy. This methodology not only enhances the 
precision of our system but also substantially reduces the misjudgments caused by factors such as noise. If a 
significant number of 'X' indicators are displayed, it is a prompt for the physician to examine the current EEG 
recording environment and check for potential issues with the EEG connections. 

 
Figure 8.  GUI Display of Coma to Brain Death Transition 

III. DISCUSSION 

A. Results 

The results of our study provide insights into the potential use of energy analysis in assessing the level of 
consciousness in patients with impaired brain function. Our analysis of the TTEMD and ApEn values of EEG signals 
from comatose and Brain Death revealed significant differences between the two groups, suggesting that the level of 
energy in the brain may be a useful indicator of brain function. In addition, the results of our analysis on the comatose 
patients showed a positive correlation between the level of energy in the brain and the level of consciousness, which 
supports the hypothesis that energy analysis can be used to assess the level of consciousness in these patients. 
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However, it should be noted that our study has some limitations. First, the sample size was relatively small, which 
may affect the generalizability of our results. Future studies with larger sample sizes are needed to confirm the 
findings of our study. Second, our study only focused on comatose and Brain Death, and the applicability of our 
findings to other patient populations, such as patients under anesthesia or in a vegetative state, remains to be explored. 

Overall, our study provides preliminary evidence of the potential of energy analysis in assessing the level of 
consciousness in patients with impaired brain function. Further research is needed to validate our findings and explore 
the clinical applications of this approach. 

B. Comparison with Previous Studies 

In contrast to previous studies in this domain, our work introduces novel aspects that substantially enhance the 
accuracy and reliability of EEG signal analysis. Most of the prior studies focus primarily on the acquisition and 
interpretation of EEG signals, but they have not adequately addressed the prevalent challenges such as channel signal 
loss, excessive noise, and high amplitude fluctuations. Our study, on the other hand, has implemented a threshold 
mechanism that automatically detects and discards problematic data, thereby drastically reducing the impact of these 
issues on the analysis outcomes. 

Furthermore, the SVM-based approach we have used for distinguishing between brain-dead and coma patients 
shows significant improvement over the traditional methods used in the previous studies. Previous methods often rely 
on manual interpretation and do not consistently provide a clear distinction between the brain states. The use of SVM 
in our study provides an automated, objective, and highly accurate means of differentiation. Moreover, the real-time 
implementation of our system and the provision for immediate feedback to the clinician set our study apart from the 
prior works. While many previous studies have focused on post-processing and analysis of EEG signals, our study 
emphasizes on real-time analysis, which has more practical implications in clinical settings. 

In conclusion, the methodologies and system introduced in our study provide significant improvements over 
previous works in terms of both the precision of EEG signal analysis and the practicability of implementation in real-
world clinical settings. 

IV. CONCLUSION 

The present study demonstrates the feasibility of analyzing EEG energy patterns to assess levels of consciousness 
in patients with disorders of consciousness. Our results indicate that using time-frequency analysis and entropy 
measures, we can differentiate between states of consciousness in patients with disorders of consciousness. 
Importantly, the proposed system offers real-time analysis and portability, making it potentially useful for clinical 
settings. 

While there are some limitations to the present study, such as the relatively small sample size and the lack of 
generalizability to other patient populations, the results suggest promising avenues for future research. Further 
exploration of the proposed system may provide additional insights into the relationship between EEG energy patterns 
and consciousness and may ultimately lead to more effective diagnostic and treatment strategies for patients with 
disorders of consciousness. Overall, the present study contributes to the growing body of research exploring the use of 
EEG-based measures to assess consciousness in patients with disorders of consciousness. By offering a novel 
approach that emphasizes the importance of analyzing EEG energy patterns, our study highlights the potential of 
EEG-based measures to improve our understanding of the neurophysiology of consciousness, and to ultimately 
improve patient outcomes. 
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