
 

1 School of Civil Engineering and Management, International University - VNU HCM, Ho Chi Minh City, Vietnam 
Vietnam National University, Ho Chi Minh City, Vietnam 

 
DYNAMIC BEHAVIOR OF A SMART BUILDING 
SUPPORTED WITH DAMPERS CONSIDERING SOIL-
STRUCTURES INTERACTION 
 
Pham Nhan Hoa1 
 

 

 

I. INTRODUCTION 

The use of dampers to enhance seismic resistances is recently popular over the world thanks to the efficiency of 
seismic resistances. Viscous fluid dampers are one of the most useful passive devices, its reasonable and economical 
[4][5][22]. 
The superstructure of a building is deeply examined such as the shear frame model (SFM) which considers beams 
accompanied by slabs as rigid bodies and the finite element method (FEM) which considers beam and column 
flexural stiffness and their axial stiffness. However, SFM is not proper for structures with large spans. FEM does not 
consider local soil conditions, and regional geology beneath its structure, the effect of pile group or distance between 
two piles, or the effect of axial load in a beam-column element on its flexural stiffness [6][7][8][9][10][11]. Hence, 
both p-delta and SI analyses for a FD structure provide a more exact dynamic response than FEM analysis. 
Dynamic properties of a structure be governed by on its natural periods which are affected by soil-structure 
interaction (SI), and by its beam-column flexural stiffness (P- effect). The research of SI covers several approaches 
such as Winkler model [13], Direct Method [12][14], or the simplest method-Lump parameter model [15][16][18].  
To more reasonably evaluate the efficiency of dynamic response reduction of FD structures, a computational model 
of FD building considering P-Delta effects for beam-column elements and SI could be analyzed. 
 
 

II. THE MODEL OF FD STRUCTURES CON P-DELTA AND SI ANALYSIS 
 

II.1. COMPUTATIONAL MODEL 
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Abstract- The paper introduces a mathematical model that determines the dynamic response of a structure retrofitted with 
viscous fluid dampers (FD), taking into account its P-Delta effect and soil-structure interaction (SI). The model reduces the 
dynamic-response of the internal forces of beam-columns when the structure is induced by an earthquake. The study includes 
numerical examples of two steel buildings, one with FD and SI, and the other without SI. The results highlight the difference 
between the two structures and provide valuable insights for civil-engineering structural designers to better resist seismic 
loading. 
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Fig. 1:  A FD structure with SI 
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Fig. 2. Mathematical model of a structure retrofitted with FD 
subjected to external dynamic forces 

Consider the m-bay, n-story planar frame and its pile foundation shown in Fig. The structure employs (mn) FD 
equipment at each of the portals. The excitation consists of n lateral forces Pj  and horizontal and vertical earthquake 
loadings ,g gx y  . Flexural stiffnesses of the beams and columns are ,

b
i jEI  and ,

c
i jEI , respectively. The beam-column 

stiffness matrix is obtained as [11] 
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From the above assuming and using Da Lambert principle, the differential equation governing the motion of a 
structure equipped with FDs is expressed in matrix form as g  VFDuMu + Cu + Ku = P M l F   (2), where M is 

the consistent or lump mass matrix. K  is a global stiffness matrix including the stiffness of soil-pile foundation KSI 
determined as [12] [15] and of beam- column elements KCnB determined as [1]; and C is the damping matrix 

computed using the Rayleigh formula as [2]. u is a displacement vector; 
d

dt
u u  and 

2

2

d

dt
u u  are velocity and 

acceleration vectors;  1,..., ,...,
T

i nP P PP  is an external force vector; l is a diagonal one matrix; 
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 is 

ground acceleration; VFDF  is a damping force vector generated by FD [4]. value of VFDF  derives from the 

manufacture and does not exceed the maximum damper force [5]. 

II.2. NUMERICAL METHOD FOR COMPUTATION OF MOTION EQUATION 
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Fig. 3. Algorithm of one-time interval 
Due mostly to non-linear forces generated from FDs and elastic forces from beam-column elements of geometry 
nonlinearity, equation (2) in the time domain is resolved using the modified Newmark method. The time domain is 
divided to obtain discrete constant values of ti and ti+1 at every t. The response at the time instants ti+1 depend on 
not only applied loads but also the preceding quantities of axial forces at the time ti. The numerical method for 
equation (2) is illustrated in Fig with the help of MATLAB routine. 

III. NUMERICAL EXAMPLES 
The 9-story steel building [23] retrofitted with FDs has yield strength y=345MPa and the damping ratios for two 
first modes of 1=2=2%. Its dynamic properties are given in Fig. 4. The first three natural periods of the structure 
are 1 1.20T s ; 2 0.49T s ; and 2 0.33T s . Building foundations are of two kinds I and II. Foundations I are at 

exterior corner columns and foundations II are at interior columns. The concrete grade for foundations is M350 
(TCVN) [24] with Ep=30Gpa. The diameter of piles is 2Rp=0.4m. The number of piles in foundation II is 

3 3 9pn     with the ratio of S (distance between two piles) and 2Rp as 5
2 p

S

R
 . The number of piles in 

foundation I is five with the distance between two piles of S as well. 
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Fig. 4. The Benchmark 9-story building 

Layer TABLE-1: Soil at pile cap 

 
Height 

cap
sH  (m) 

Young modulus 
cap
sE (MPa) 

Poisson  
coeff. cap

s  
Shear modulus 

cap
sG  (MPa) 

Density 
cap
s (kg/m3) 

Soil velocity 
cap
sc (m/s) 

I 2.5 30.0 0.3 11.5 1835 79 

 
Soil at piles 

I 

35 

30.0 0.40 10.7 1937 74 

II 50.0 0.35 18.5 1937 98 

III 70.0 0.25 28.0 1937 120 
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IV 90.0 0.20 37.5 1937 139 

Therefore, the stiffness and damping of foundations I and II are [16][17][19][20][21][25] as 
3

, ,2 1685.1 10I II
x y x y

kNk k m   , , ,
.2 18756I II

x y x y
kN sc c m  , 32 28179 10I II kNk k m    , 

.2  81392I II kN sc c m    

The ElCentro earthquake [3] acts on the building along the x axis with peak ground acceleration (PGA) of 

 
max

0.35gx g  (Fig. 5).  Analysis duration is 35 seconds with constant time intervals of t=0.00125s. The 

response of the structure are analyzed into two groups of non-controlled and FD-controlled structures as TABLE-2 

with the FD in one portal as 6
,max2 10 ; 1; 60   VFD VFD

j j j
NsC f kNm  

TABLE-2: ANALYZED CASES 

Name of cases 
Analysis combined 

Linear P- SI FD 
(LIN without SI)NCT     

(LIN with SI)NCT     
(P- without SI)NCT     

(P- with SI)NCT     
(LIN without SI)FD     

(LIN with SI)FD     
(P- without SI)FD     

(P- with SI)FD     
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Fig. 5. Time history of the ElCentro ground acceleration [3] 
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Fig. 6. Story drift response versus time without FD 
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Fig. 7. Story drift response versus time with FD 
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Fig. 8. Top acceleration response versus time without FD 
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Fig. 9. Top acceleration response versus time with FD 
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Fig. 10. Axial force of the second column without FD 
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Fig. 11. Axial force of the 2nd column with FD 
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Fig. 12. Shear force at the end a of the 2nd column without FD 
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Fig. 13. Shear force at the end a of the second column with FD 
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Fig. 14. Moment at the end a of the second column 
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y ) without FD 
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Fig. 15. Moment at the end a of the 2nd column with FD Fig. 16. Hysteretic loop of Shear force and FD without SI 
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Fig.17. Hysteretic loop of Moment and FD without SI 
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Fig. 18. Hysteretic loop of Shear force and FD with SI 
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Fig. 19. Hysteretic loop of Moment and FD with SI 
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Fig. 20. Maximum story drift without FD 
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Fig. 21. Maximum story drift with FD 
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Fig. 22. Ratio of columns’ maximum shear forces at 1-axis to 

its weight without FD 
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Fig. 23. Ratio of columns’ maximum shear forces at 1-axis to 

its weight with FD 
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Fig. 24. Dynamic reduction in horizontal displacements and 

accelerations of the nine floors with and without FD 
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Fig. 25. Dynamic reduction in Shear force at column ends at the nine floors with and without FD 
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Fig. 26. Dynamic reduction in Moment at column ends at the nine floors with and without FD 
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Fig. 27. Difference between P- analysis and linear analysis of 
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Fig. 28. Difference between P- analysis and linear 
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the structure without FD analysis of the structure with FD 
Dynamic responses of the cases are compared in  Fig. 6 to Fig. 28Fig. The simplest analysis (LIN without SI)NCT is 
not much different in maximum displacement response to other analyses consisting of (LIN with SI)NCT, (P- 
without SI)NCT, and (P- with SI)NCT (Fig. 6).  However, it has a difference up to approximate 40% in internal forces 
including shear force and moment compared with (P- with SI)NCT (Fig. 27). The acceleration responses of the four 
cases without FD are the same in large PGA (peak ground acceleration) zone but dissimilar in small PGA zone (Fig. 
8). The axial forces of no-SI analysis are different to the axial force of SI analysis (Fig.10 and Fig. 11Fig). Equipped 
with FD, differences between linear and P- analysis, non-SI, and SI are not considerable except 9th story (Fig. 28).  
The hysteretic loop of P- analysis shows the nonlinearity of the relationship between force and displacement (Fig. 
16 to Fig. 19). Area of the FD hysteretic loop is many times smaller than an area of the shear-force hysteretic loop 
(Fig. 18), but FD significantly contribute to dynamic responses of FD structures. FD reduces 60% average, 40% max 
displacement (Fig. 24), and up to 80% shear force and moment (Fig. 25 and Fig. 26). To enhance response reduction 
or a larger area of the hysteretic loop, FD could use higher maximum damper forces. 
IV.  

IV. CONCLUSION 
This paper examines linear and P- analysis of FD structures considering soil-structure interaction and subjected to 
seismic loading. In all cases of considering and not considering SI, linear, and P- analysis, the nine-story FD 
structure expressions the acceptable dynamic reduction although it has different internal forces. In the cases of linear 
and P- analysis, the paper illustrates a more accurate evaluation of dynamic responses caused by columns’ large 
axial forces on the 1st floor. Additionally, in the cases of linear without SI and P- with SI, the efficiency of FD is 
demonstrated in reducing dynamic responses. Linear and P- analysis is different and acceptable provided that the 
value of FD damper force is sufficiently large. 
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