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I. INTRODUCTION 

In few decades, it has been observed that the many probability distributions have been generated but the real data 
sets related to engineering, geology, life science, finance, medicine, reliability, life testing, and survival analysis do 
not always provide a better fit to data set of these distributions. So, the formulation of new generated distributions 
appears to be necessary to deal with the limitations in these areas. The extended, generalized, and modified models 
are generated by inserting one or more parameters or making some transformation to the parent distribution. 
Therefore, the new proposed models will provide a better fit as compared to the challenging models. 

A new two-parameter continuous life-time distribution with bathtub-shaped or increasing failure rate 
function was presented by Chen [1]. The distribution function of Chen distribution can be expressed as  
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And its probability density function (PDF) is 
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The motivation to extend the Chen distribution is to set up a flexible model that has revealed the various shapes of 
the hazard and density functions. Srivastava & Kumar [2] has presented the Chen model and illustrated the MCMC 
methods for Bayesian inference.  Bhatti et al. [3] have created the extended Chen distribution is derived from the 
generalized Burr-Hatke differential equation and nexus between the exponential and gamma variables. Tarvirdizade 
and Ahmadpour [4] introduced a new lifetime distribution by compounding of the Weibull and Chen distributions 
and called Weibull–Chen distribution having increasing and bathtub-shaped hazard rate function and it has 
constructed. Joshi & Kumar [5] has defined a flexible model called Lindley-Chen distribution using Chen 
distribution as a base distribution. 

The generalized exponential (GE) distribution has introduced by Gupta & Kundu [6] this extended family 
can accommodate data with increasing and decreasing failure rate functions, also Kus [7] has introduced the two-
parameter exponential Poisson (EP) distribution by compounding exponential distribution with zero truncated 
Poisson distribution with decreasing failure rate. The CDF of PE distribution is, 
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While Barreto-Souza and Cribari-Neto [8] have introduced generalized EP distribution having the decreasing or 
increasing or upside-down bathtub shaped failure rate, which is the generalization of the distribution proposed by 
Kus [7] adding a power parameter to this distribution. Tracking the similar method, Cancho [9] has introduced a 
new distribution family also based on the exponential distribution with an increasing failure rate function known as 
Poisson exponential (PE) distribution. The CDF of PE distribution can be expressed as  
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Louzada-Neto et al [10] has introduced a two-parameter Poisson-exponential with increasing failure rate by using 
the same approach as used by Cancho [9] under the Bayesian approach. Alkarni and Oraby [11] have presented a 
new lifetime class with a decreasing failure rate which is obtained by compounding truncated Poisson distribution 
and a lifetime distribution. The CDF of the Poisson family is given by,  
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Where  the parameter is space and  ,G y   is the CDF of baseline distribution. 

Mahmoudi and Sepahdar [12] have presented a new four-parameter distribution with decreasing, 
increasing, bathtub-shaped, and unimodal hazard rate called as the exponentiated Weibull–Poisson (EWP) 
distribution and it has obtained by compounding exponentiated Weibull (EW) and Poisson distributions. The new 
compounding distribution named the Weibull–Poisson distribution is introduced by Lu & Shi [13] having the failure 
rate function of  shape of increasing, decreasing, upside-down bathtub-shaped or uni-modal. Further Kaviayarasu 
and Fawaz [14] have made an extensive study on Weibull–Poisson distribution through a reliability sampling plan. 
Kyurkchiev et al [15] has used the exponentiated exponential-Poisson as the software reliability model. Louzada et 
al [16] has used different estimation methods to estimate the parameter of exponential-Poisson distribution using 
rainfall and aircraft data. Joshi and Kumar [17] have presented the Lindley Chen distribution using Chen as base 
distribution  

The different parts of this article are organized as, we present the Poisson Chen distribution with its 
statistical and mathematical properties in Section 2. We present the maximum likelihood estimation method in 
Section 3. In Section 4 using a real dataset, we present the estimated values of the model parameters and their 
corresponding asymptotic confidence intervals and Hassian matrix. Also, we have introduced the different test 
criteria to assess the applicability of the proposed model. Some concluding remarks are presented in Section 5. 
 



Ramesh Kumar Joshi, Vijay Kumar    3 
 

 

II. THE POISSON CHEN (PC) DISTRIBUTION 

Alkarni and Oraby [11] have introduced the Poisson family and its CDF alternatively may be defined as 
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 (2.1) 

And its corresponding PDF is
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Here ( ; )G t   and ( ; )g t  are the parent cumulative distribution and probability density functions respectively and 

  be the parameter space of baseline distribution. Now we have taken the Chen distribution as baseline distribution 

then using cumulative distribution and probability density functions of Chen distribution (1.1) and (1.2) in (2.1) and 
(2.2) we get the cumulative distribution and probability density functions of Poisson Chen distribution respectively 
written as 
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The Reliability/Survival function of PC distribution is   
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 (2.5) 

HAZARD FUNCTION  

Suppose t be endurance time of an item and we desire the probability that it will not survive for an additional time dt 
then, hazard rate function can be expressed as, 
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 (2.6) 

We have plotted the curve of the PDF and HRF of PC distribution in Figure 1. It has been observed that the shapes 
of the PC density are arc, positive-skewed, negative-skewed, and symmetrical. The hazard rate function (HRF) for 
the PC distribution can have various shapes such as increasing, decreasing, decreasing–increasing, increasing–
decreasing, reverse J-shaped and bathtub for different values of parameters.  
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Fig 1. Plots of PDF (left panel) and HF (right panel) for fixed λ and different values of α and β. 

 
QUANTILE FUNCTION OF PC DISTRIBUTION  

The quantile function is 
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 (2.7) 

The random numbers of the PC distribution can be generated using the CDF (2.3). Let B denote a uniform random 
variable in (0, 1), then the simulated values of X can be obtained by setting, 
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 (2.8) 

SKEWNESS AND KURTOSIS 

The coefficient of skewness of the PC distribution can be obtained as 
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The coefficient of kurtosis given by Moors [18] of the PC distribution can be obtained as 
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III. ESTIMATION OF MODEL PARAMETERS 

Let X be a random variable follows a three-parameter  , ,PC    having PDF (2.4). The maximum likelihood 

function of the PC distribution is given by, 
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The log-likelihood function can be written as, 
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Differentiating (3.1) with respect to α, β and λ we get, 
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By solving these three non-linear equations equating to zero then we get the estimated values of the parameters of 
the Poisson Chen distribution. With the aid of appropriate computer programming we can solve them numerically. 

Suppose the parameter vector ( , , )    and the corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then the 
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Further differentiating we get, 
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Usually, it is useless that the MLE has asymptotic variance 1B because we don’t know . Hence we approximate 

the asymptotic variance by putting in the estimated value of the parameters. The common procedure is to use the 

observed Fisher information matrix  ˆM   as an estimate of the information matrix B. Using the Newton-Raphson 

algorithm to maximize the likelihood creates the observed information matrix and hence the variance-covariance 
matrix is obtained as, 
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Hence, approximate 100(1-α) % confidence intervals for α, β and λ can be constructed from the asymptotic 
normality of MLEs as, 
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IV. ILLUSTRATION WITH REAL DATA 

In this section, we have illustrated the applicability of Poisson Chen distribution using two real datasets used by 
previous researchers. To compare the potentiality of the proposed model, we have considered the following four 
distributions. 

i) Weibull Extension (WE) Model: 
The probability density function of Weibull extension (WE) distribution introduced by Tang et al [19] with three 
parameters  , ,     is 
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ii) Poisson exponential model (PE) 

The probability density function of Poisson–exponential distribution was defined by Louzada-Neto et al [20] also it 
was used by Rodrigues et al [21] is 
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iii) Exponential power (EP) distribution: 
The probability density function Exponential power (EP) distribution Smith & Bain [22] is 

   1( ) exp 1 ; ( , ) 0, 0x x
EPf x x e e x
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where α and λ are the shape and scale parameters, respectively. 
 

iv) Chen distribution: 
Chen [1]  has introduced Chain distribution having probability density function (PDF) as  

    1 1 0 0x xf x; , x e exp e ;( , ) , x
              

  
. 

Dataset-I 
Badar and Priest [23] have used the data with sample size 63 that represent the strength measured in GPA for single 
carbon fibers of 10mm in gauge lengths and which are as follows: 
 
1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525,  2.532, 2.575, 
2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 
3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 
3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020 
 
By using the log-likelihood function (3.1) we have illustrated the maximum likelihood estimates, directly by using R 

software R Core Team [24] and Dalgaard [25]. We have calculated ̂ = 0.5368, ̂ =1.0024 and ̂ = 108.2295   

corresponding Log-Likelihood value is -56.2956 from the above dataset. In Table 1 we have demonstrated the 
MLE’s and standard errors (SE) with 95% CI for α, β and λ.  

Table 1 
MLE, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 
alpha 0.5368 0.0407 (0.4571, 0.6165) 
beta 1.0024 0.1292 (0.7492, 1.2555) 

lambda 108.2295 26.1931 (56.8911, 159.5679) 
 
An estimate of the variance-covariance matrix by using MLEs, using equation (3.2) is 

 

 
  0.00165  -0.00477  -0.536891  -0.00477   0.01668   2.59055
 -0.53689   2.59055   686.0767

B
     
 

 

The graphs of profile log-likelihood function for the parameters α, β and λ have been depicted in Figure 2 and found 
that the maximum likelihood estimates can be uniquely determined. 
 

 
Fig 2. Graph of Profile log-likelihood function for the parameters α, β and λ. 

 
To get the extra information about the goodness-of-fit of the Poisson Chen distribution we have plotted the quantile- 
quantile (Q-Q) and KS plots in Figure 3. We noticed that the PC model fits the data very well. 
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Figure 3. The Q-Q plot (left panel) and the KS plot (right panel) of PC distribution 

 
We have calculated the Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 
information criterion (CAIC), and Hannan-Quinn information criterion (HQIC) for the assessment of the 
applicability of the proposed model, which are displayed in Table 2.  

Table 2 
Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PC 56.2956 118.5913 125.0207 118.9981 121.1200 

WE 61.9865 129.9731 136.4025 130.3798 132.5018 

PE 57.2052 118.4105 122.6967 118.6105 120.0963 

EP 69.3299 142.6598 146.9461 142.8533 144.3456 

Chen 70.0133 144.0265 148.3128 144.2265 145.7124 

 
 
In Figure 4, we have displayed the density function of fitted distributions and the Histogram and Empirical 
distribution function with the estimated distribution function of PC and some selected models are presented. 
 

 
Fig 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution 

function with estimated distribution function (right panel). 
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We have calculated the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von 
Mises (CVM) statistics and presented in Table 3 to compare the goodness-of-fit of the PC distribution with other 
competing distributions. It is observed that the PC distribution has the minimum value of the test statistic and higher 
p-value hence we decide that the PC distribution gets quite better fit and more consistent and reliable results from 
others taken for evaluation. 

Table 3 
The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PC  0.0799(0.8151)  0.0619(0.8039)  0.3294(0.9142)  

WE  0.0879(0.7148)  0.1250(0.4771)  0.9381(0.3911)  

PE  0.0635(0.9613)  0.0543(0.8516)  0.4044(0.8438) 

EP  0.1443(0.1452)  0.3504(0.0978)  2.3516(0.0595)  

Chen  0.1534(0.1033)  0.3123(0.1247)  2.1928(0.0723)  

 
Data set II 
The data gives breaking stress of carbon fibers (in Gba) for 100 observations which was used by Nichols & Padgett 
[26]. 
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 
3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 
3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 
1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65 
 
The graphs of profile log-likelihood function for the parameters α, β and λ have been depicted in Figure 5 and found 
that the maximum likelihood estimates can be uniquely determined. 
 

 
Fig 5. Graph of Profile log-likelihood function for the parameters α, β and λ. 

From the above data set, we have obtained ̂ = 0.5730, ̂ = 0.5419 and ̂ = 8.0976    corresponding Log-

Likelihood value is -141.4765. In Table 4 we have demonstrated the MLE’s with their standard errors (SE) and 95% 
confidence interval for α, β and λ.  

Table 4 
MLE, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 
alpha 0.5730 0.0510   (0.4554, 0.6906) 
beta 0.5419        0.1356 (0.2762, 0.8076) 

lambda 8.0976 2.4463 (3.3028, 12.8924) 
 

An estimate of the variance-covariance matrix by using MLEs, using equation (3.2) is 
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 
  0.00360   -0.00773  -0.123591 -0.00773     0.01839   0.3094
 -0.12359    0.3094     5.9843

B
     
 

 

To get the additional information about the goodness of fit of the Poisson Chen distribution we have plotted the Q-Q 
and KS plots in Figure 6. From Figure 6 it is proven that the PC model fits the data very well. 
 

 
Fig 6. The Q-Q plot (left panel) and the KS plot (right panel) of PC distribution 

 
We have calculated the Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected Akaike 
information criterion (CAIC), and Hannan-Quinn information criterion (HQIC) for the assessment of the applicality 
of the proposed model, which are displayed in Table 5.  

Table 5 
Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PC 141.4765 288.9531 296.7686 289.2031 292.1162 

WE 141.5577 289.1153 296.9309 289.3653 292.2784 

PE 144.2051 292.4102 297.6205 292.5339 294.5189 

EP 145.9589 295.9179 301.1282 296.0391 298.0266 

Chen 148.9044 301.8089 307.0192 301.9326 303.9176 

 
 
In Figure 7, we have displayed the density function of fitted distributions and the Histogram and Empirical 
distribution function with the estimated distribution function of PC and some selected models are presented. 
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Fig 7. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution 

function with estimated distribution function (right panel). 
 
We have calculated the value of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von 
Mises (CVM) statistics and presented in Table 6 to compare the goodness-of-fit of the PC distribution with other 
competing distributions. It is observed that the PC distribution has the minimum value of the test statistic and higher 
p-value hence we decide that the PC distribution gets quite better fit and more consistent and reliable results from 
others taken for evaluation. 

Table 6 
The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PC 0.0691(0.7265) 0.0753(0.7204) 0.4212(0.8271)  

WE 0.0607(0.8542) 0.0635(0.7932) 0.4212(0.8268)  

PE 0.0954(0.3229) 0.1724(0.3284) 0.9157(0.4044) 

EP 0.0993(0.2771) 0.1861(0.2963) 1.3081(0.2297)  

Chen 0.0945(0.3336) 0.2180(0.2353) 1.6938(0.1364)  

 
V. CONCLUDING REMARKS 

 
We have put forward a three-parameter univariate probability distribution called Poisson Chen distribution. A 
detailed study of some statistical and mathematical properties of the proposed distribution including the derivation 
of explicit expressions for its reliability function, survival function, hazard function, the quantile function which is 
useful for calculating partition values and skewness and kurtosis, skewness and kurtosis, and simulation of random 
numbers from the proposed distribution. The unknown model parameters are estimated using the method of MLE 
and constructed their corresponding confidence intervals. The graph of the PDF of the proposed distribution has 
shown that its shape is the skewed model and flexible for modeling real-life data. Also, the graph of the hazard 
function is monotonically decreasing or increasing according to the value of the model parameters. The performance 
of the proposed distribution has been evaluated by considering two real-life datasets and the results revealed that the 
proposed distribution is much flexible as compared to some other fitted distributions. 
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