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I. INTRODUCTION 

Lifetime distributions are generally used to study the length of the life of components of a system, a device, and in 
general, reliability and survival analysis. Lifetime distributions are often applied in areas such as life science, 
medical sciences, engineering, biology, insurance, etc. To analyze lifetime data, many continuous probability 
distributions like Cauchy, gamma, exponential, Weibull have been often used in statistical literature. For a few 
years, most of the researchers are attracted towards one parameter Logistic distribution for its potential in modeling 
lifetime data, and it has been seen that this distribution has performed admirably in many areas. 
In probability theory and statistics, exponential probability distribution is the continuous memoryless random 
distribution which has played a significant role in analyses of life testing data.  A continuous probability distribution 
which describes the time elapsed between events in a Poisson process which occurs at a constant average rate 
occurring independently and continuously is called exponential probability distribution which is a type of the 
gamma distribution. It is the continuous analog of the geometric distribution. 
Inclusion of different shapes such as decreasing, increasing, bathtub-shaped and inverted Bathtub-shaped failure rate 
in a single model forming a compounded survival model would be beneficial in survival analysis. Such a 
compounded model would provide desirable properties like considerable flexibility and goodness of fit for fitting a 
broad variety of lifetime data sets. Furthermore by constructing confidence interval over its model parameter, such 
survival model may also be used to determine the distribution class from which the data is selected. For these 
desirable properties, we have introduced the purposed distribution. 
The logistic distribution is a univariate continuous distribution which is similar in shape to normal distribution. It is 
a special case of Tukey lambda distribution. Both its Probability density function and Cumulative distribution 

International Journal of Latest Trends in Engineering and Technology  
Vol.(18)Issue(2), pp.020-030 

DOI: http://dx.doi.org/10.21172/1.182.05 
e-ISSN:2278-621X 

 

Abstract- - In this article, we have considered a model of three-parameter univariate continuous distribution which is called 
Logistic exponential extension distribution. We have discussed some statistical properties of the purposed distribution such as 
the probability density function, cumulative distribution function and hazard rate function, survival function, quantile 
function, the skewness, and kurtosis measures. Using Maximum likelihood estimation, we have assessed the model parameters 
of the proposed distribution. By using the maximum likelihood estimate we have constructed the asymptotic confidence 
interval for the model parameters. We have taken two real data sets for the illustration purposes. The goodness of fit of the 
proposed distribution is also evaluated by fitting it in comparison with some other existing distributions using two real data 
sets. 

Keywords – Logistic distribution, Exponential extension distribution, Hazard function, MLE, Survival function 



A Study on Properties and Real Data Applications of the Logistic Exponential Extension Distribution  21 

functions have been used in many different areas such as logistic regression, modeling growth, logit models and 
neural networks. Application of this distribution is seen in areas such as demography, physical sciences, finance, 
sports modeling, actuarial sciences etc. In comparison to normal distribution, the logistic distribution has higher 
kurtosis (heavier tails) so it provides better insight into the likelihood of extreme events and is more consistent with 
the underlying data. 
Let X be a non-negative random variable follows the logistic distribution with shape parameter   θ > 0, and its 
cumulative distribution function is given by  
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Tahir et al. (2016) have introduced the logistic-X family which is a new generating family of continuous distributions 
generated from a logistic random variable [15]. Its probability density function may be reversed-J shaped, 
symmetrical, right-skewed and, left-skewed and may have bathtub, upside-down bathtub, decreasing and increasing 
hazard rates shaped. Mandouh (2018) has introduced Logistic-modified Weibull distribution which is flexible for 
survival analysis as compared to modified Weibull distribution[10]. Joshi & Kumar (2020) have introduced the 
Lindley exponential power distribution having a more flexible hazard rate function[5]. Lemonte et al. (2015) have 
introduced 3 parameter extension of the exponential distribution which is quite flexibale and can be used effectively 
in modeling survival data, reliablility problems, fatigue life studies and hydrological data[9]. It can have increasing, 
decreasing, constant, bathtub shaped, upside-down bathtub(unimodal) and decreasing-increasing-decreasing hazard 
rate function. Mansoor et al. (2019) have introduced exponential extension distribution with three parameters where 
the submodels are the exponential, logistic-exponential and Marshall-Olkin exponential distributions[11]. The 
distribution has considerable flexibility and its associated probability density function can be unimodal or 
decreasing. Furthermore, it can have increasing, decreasing, bathtub and upside-down bathtub hazard rates shaped. 
Chaudhary & Kumar (2020) have introduced the half logistic exponential extension distribution using the parent 
distribution as exponential extension distribution [3]. 
Lan & Leemis (2008) has introduced a compounded model called logistic-exponential survival distribution, which 
consists of Decreasing Failure Rate, Increasing Failure Rate, Upside-Down Bathtub Shaped Failure Rate and 
Bathtub Shaped Failure rate[8]. This model would be very useful in lifetime modeling. Unlike most distributions in 
the Upside-Down Bathtub Failure Rate and Bathtub Shaped Failure Rate classes, the logistic–exponential 
distribution show closed-form density, survival functions, hazard and cumulative hazard. The survival function of 
the logistic–exponential distribution is 
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We have purposed the new distribution called Logistic exponential extension (LEE) distribution using the same 
approach used by (Lan & Leemis, 2008). With the aim of achieving more flexibility, we have introduced this 
distribution by insertion of one more parameter to exponential extension distribution. This helps to achieve a better 
fit to the lifetime data set. We have presented this distribution with their properties and applicability. Proposed study 
of the distribution is presented in different section explained as follows. In Section 2 we introduce the Logistic 
exponential extension (LEE) distribution and their various statistical and mathematical properties. In section 3, the 
maximum likelihood estimation (MLE) is used to estimate the model parameters. We have constructed asymptotic 
confidence intervals using the observed information matrix for the Maximum Likelihood estimation (MLE).In 
Section 4 the application and capability of Logistic exponential extension (LEE) distribution has been studied by 
analyzing two real dataset. Here, the goodness of fit of the proposed distribution is compared through a real data set 
to some well-known existing distributions. Finally, in Section 5 we present conclusion to the study. 

II. THE LOGISTIC EXPONENTIAL EXTENSION(LEE) DISTRIBUTION 

We have purposed the new distribution called Logistic exponential extension (LEE) distribution using the same 
approach used by (Lan & Leemis, 2008)[8]. In this study we have taken the exponential extension (EE) (Joshi, 
2015)[6] as baseline distribution with CDF and PDF respectively as follows, 
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 Let X be a non-negative random variable with a positive scale parameter λ and a positive shape parameters α and β 
then Cumulative Distribution Function(CDF) of logistic exponential extension distribution can be defined as 
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The Probability Density Function(PDF) of logistic exponential extension distribution is defined as 
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This CDF function resembles the log logistic CDF function with the second term of the denominator being changed 
in its base to an exponential extension function, so we named it as logistic exponential extension distribution. We 
denote it as LEE distribution. 
  
A. Reliability function/Survival function  
The reliability function of LEE distribution is defined as, 
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B. Hazard function  
The hazard rate function of LEE distribution is defined as, 
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In Figure 1, we have shown the plots of the PDF and hazard rate function of LEE distribution for different values of 
α, β and λ. 

 
Figure 1. Plots of PDF (left panel) and hazard function (right panel) for different values of α, β and λ. 

C. Quantile function 
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The Quantile function of Logistic exponential power distribution can be expressed as 

 

1/
1

ln( ) ln ln 1 0;     0 1
1

p
x p

x p






                  
 (2.7) 

D. Skewness and Kurtosis: 
The Bowley's coefficient of Skewness is the measure of Skewness based on quartiles which can be expressed as, 
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As defined by (Moors,1988), the coefficient of Kurtosis based on octiles is, 
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III. METHODS OF ESTIMATION 

In this section, the parameters of the proposed distribution are estimated by applying the well-known method the 
maximum likelihood method. 
Maximum Likelihood Estimates 
The most commonly used method for the estimation of the model parameter is the maximum likelihood method. 

(Casella & Berger, 1990)[2]. Let, 1 2, ,..., nx x x  is a random sample from  , ,LEE     and the likelihood 

function,  , ,L     is given by, 
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Now log-likelihood density is 
 

      

  

/ /

1 1 1 1

/

1

, , | ln( ) ln 1 / 1/ ( 1) ln exp 1

                                                                     2 ln 1 exp 1

i i

i

n n n n
x x

i i i i
i i i i

n
x

i
i

x n x x x e x e

x e

 



        



 

   





        

     

   





 (3.1) 
Differentiating (3.1) with respect to α, β and λ we get, 
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The values of unknown model parameters α, β and λ can be obtained by equating above three linear equations to 
zero and solving them simultaneously for α, β and λ. We obtain the corresponding the maximum likelihood estimate 

ˆ ˆˆ ,    and    of the parameters α, β and λ.To obtain the estimated value of α, β and λ, we have used statistical 

computing software such as R, Mathematica, Matlab etc for maximization of equation(3.1) 
 
We have to calculate the observed information matrix to construct the confidence interval estimation of α, β and λ 
and for testing of the hypothesis,. The observed information matrix for α, β and λ can be obtained as, 
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Let ( , , )     denote the parameter space and the corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then 

     1

3
ˆ 0,N C

    
 

 where  C   is the Fisher’s information matrix. Using the Newton-Raphson 

algorithm to maximize the likelihood creates the observed information matrix and hence the variance-covariance 
matrix is obtained as, 
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Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, β and λ can be 
constructed as, 
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Where /2Z is the upper percentile of standard normal variate 

IV. REAL DATA APPLICATIONS 

In this section we have taken two real data sets for the illustration purposes which are as follows, 
Data Set 1 
The data given below represents the fatigue life of 6061-T6 aluminum coupons cut parallel to the direction of rolling 
and oscillated at 18 cycles per seconds (cps) which consists of 101 observations with maximum stress per cycle 
31,000 psi. This data set was originally analyzed by Birnbaum and Saunders (1969) [1]. 
70,   90,   96,   97,   99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 
119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 
131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 
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142, 142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159, 162, 163, 
163, 164, 166, 166, 168, 170, 174, 196, 212  
The MLEs are calculated directly by using optim() function in R software (R Core Team, 2020)[14] and (Ming, 
2019)[12] by maximizing the likelihood function (3.1). By maximizing the likelihood function in (3.1) we have 

obtained ̂ = 1.7919, ̂ = 418.0473, ̂ = 0.1211 and corresponding Log-Likelihood value is l = -455.3564. In 

Table 1 we have demonstrated the MLE’s with their standard errors (SE) and 95% confidence interval for α, β, and 
λ. 

 
 
 
 

Table 1 
MLE and SE and 95% confidence interval for α, β and λ 

Parameter MLE SE 95% ACI 

alpha 1.7919   0.1561 (1.4860, 2.0979) 

beta 418.0473   4.767 (408.704, 427.3906) 

lambda 0.1211   0.0092 (0.1031, 0.1391) 

.  
We have displayed the graph of the profile log-likelihood function of α, β, and λ in Figure 2 and observed that the 
MLEs are unique. 

 
Figure 2. Graph of profile log-likelihood function of α, β, and λ. 

In Figure 3 we have presented the P-P plot (empirical distribution function against theoretical distribution function) 
and Q-Q plot (empirical quantile against theoretical quantile). 

  
Figure 3. The P-P plot (left panel) and Q-Q plot (right panel) of LEE distribution 

For the goodness of fit purpose we use negative log-likelihood (-LL), Akaike information criterion (AIC), 
Bayesian information criterion (BIC), Corrected Akaike Information criterion (AICC) and Hannan-Quinn 
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information criterion (HQIC), statistic to select the best model among selected models. The expressions to calculate 
AIC, BIC, AICC and HQIC are listed below: 
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where k is the number of parameters and n is the size of the sample in the model under consideration. Further, in 
order to evaluate the fits of the LEE distribution with some selected distributions we have taken the Kolmogorov-
Simnorov (KS), the Anderson-Darling (W) and the Cramer-Von Mises (A2) statistic. These statistics are widely used 
to compare non-nested models and to illustrate how closely a specific CDF fits the empirical distribution of a given 
data set.  These statistics are calculated as 
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where  i i  ;d CDF x  the xi’s being the ordered observations. 

To illustrate the goodness of fit of the Logistic exponential extension distribution, we have taken some well-known 
distribution for comparison purpose which are listed blew, 
  
A. Generalized Rayleigh( GR) distribution 
The probability density function of Generalized Rayleigh (GR) distribution (Kundu & Raqab, 2005)[7] is  
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Here α and λ are the shape and scale parameters respectively. 
 
B. Chen distribution 
The probability density function of Chen distribution (Chen, 2000) is given by[4], 
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C. GENERALIZED EXPONENTIAL (GE) DISTRIBUTION 

The probability density function of generalized exponential distribution (Gupta & Kundu, 1999) 
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D. Exponential power (EP) distribution 
The probability density function Exponential power (EP) distribution (Smith & Bain, 1975) is 
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where α and λ are the shape and scale parameters, respectively. 
For the judgment of potentiality of the proposed model we have presented the value of Akaike information criterion 
(AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (AICC) and Hannan-Quinn 
information criterion (HQIC) which are presented in Table 2.  
 

 
Table 2 

Log-likelihood (LL), AIC, BIC, AICC and HQIC 

Model -LL AIC BIC AICC HQIC 

LEE 455.3564 916.7128 924.5581 916.9602 919.8888 

GR 457.3766 918.7532 923.9835 918.8757 920.8706 

GE 463.7324 931.4648 936.6951 931.5873 933.5822 

Chen 467.0598 938.1196 943.3499 938.2421 940.2370 

EP 476.7897 957.5794 962.8096 957.6994 959.6967 

 
The Histogram and the density function of fitted distributions and Empirical distribution function with estimated 
distribution function of LEE and some selected distributions are presented in Figure 4. 

 
Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with estimated 

distribution function (right panel). 
 

In comparision of the goodness-of-fit of the LEE distribution with other competing existing distributions we have 
presented the p-values of the Anderson-Darling (AD), the Cramer-Von Mises (CVM), and Kolmogorov-Simnorov 
(KS) statistics in Table 3. It is seen that the LEE distribution has the minimum value of the test statistic and higher 
p-value which shows that the LEE distribution gets the best fit for the used real data set and more consistent and 
reliable results than others existing distribution taken for comparison. 

Table 3 
The goodness-of-fit statistics and their corresponding p-value 

Model AD(p-value) CVM(p-value) KS(p-value) 

LEE  0.0402(0.9331)  0.2631(0.9630)  0.0584(0.8811) 

GR 0.1050(0.5620) 0.6033(0.6445) 0.0901(0.3850) 

GE 0.3112(0.1257) 2.0724(0.0840)  0.1066(0.2014) 

Chen 0.2960(0.1386) 2.0769(0.0835) 0.1102(0.1718) 

EP 0.6942(0.0130) 4.5057(0.0050)  0.1378(0.0433) 

 
Data Set 2 
The data below are from an accelerated life test of 59 conductors, (Nelson & Doganaksoy, 1995)[13]. The failures 
can occur in microcircuits because of the movement of atoms in the conductors in the circuit; this is referred to as 
electro-migration. The failure times are in hours, and there are no censored observations.  
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6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958, 4.288, 
6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 
6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 
7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923. 

. By maximizing the likelihood function in (3.1). We have obtained ̂ = 1.1363, ̂ = 23.5526, ̂ = 3.0617 and 

corresponding Log-Likelihood value is l = -111.4168. In Table 4 we have demonstrated the MLE’s with their 
standard errors (SE) for α, β, and λ. 

Table 4 
MLE and SE for α, β and λ 

Parameter MLE SE 

alpha 1.1363      0.5083    

beta 23.5526     11.8539    

lambda 3.0617      5.1212   

.  
We have displayed the graph of the profile log-likelihood function of α, β, and λ in Figure 5 and observed that the 
MLEs are unique. 

 
Figure 5. Graph of profile log-likelihood function of α, β, and λ. 

In Figure 6 we have presented the P-P plot (empirical distribution function against theoretical distribution function) 
and Q-Q plot (empirical quantile against theoretical quantile). 

 
Figure 6. The P-P plot (left panel) and Q-Q plot (right panel) of LEE distribution 

For the judgment of potentiality of the proposed model we have presented the value of Akaike information criterion 
(AIC), Bayesian information criterion (BIC), Corrected Akaike information criterion (AICC) and Hannan-Quinn 
information criterion (HQIC) which are presented in Table 5.                                                             
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Table 5 
Log-likelihood (LL), AIC, BIC, AICC and HQIC 

Model -LL AIC BIC AICC HQIC 

LEE 111.4168 228.8337 235.0663 229.2700 231.2666 

GR 111.8717 227.7434 231.8984 227.9576 229.3653 

GE 114.9473 233.8946 238.0497 234.1089 235.5166 

Chen 116.3874 236.7748 240.9299 236.9891 238.3968 

EP 116.5015 237.0029 241.1580 237.2098 238.6249 

 
The Histogram and the density function of fitted distributions and Empirical distribution function with estimated 
distribution function of LEE and some selected distributions are presented in Figure 7. 

 
Figure 7. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution function with estimated 

distribution function (right panel). 
In comparision of the goodness-of-fit of the LEE distribution with other competing existing distributions we have 
presented the p-values of the Anderson-Darling (AD), the Cramer-Von Mises (CVM), and Kolmogorov-Simnorov 
(KS) statistics in Table 6. It is seen that the LEE distribution has the minimum value of the test statistic and higher 
p-value which shows that the LEE distribution gets the best fit for the used real data set and more consistent and 
reliable results than others existing distribution taken for comparison. 

Table 6 
The goodness-of-fit statistics and their corresponding p-value 

Model AD(p-value) CVM(p-value) KS(p-value) 

LEE  0.0302(0.9764)  0.1858(0.9938)  0.0586(0.9801) 

GR  0.0433(0.9171)  0.2554(0.9674)  0.0741(0.8788) 

GE 0.1173(0.5079) 0.7368(0.5282)  0.1042(0.5103) 

Chen  0.1913(0.2855)  1.1741(0.2774)  0.1238(0.3006) 

EP  0.2398(0.2021)  1.3735(0.2098)   0.1365(0.2021) 

V. CONCLUSION 

In this paper, we have purposed a new three-parameter univariate continuous distribution called Logistic 
exponential extension (LEE) distribution and some of statistical properties of the LEE distribution including the 
shapes of the cumulative distribution, probability density function, survival function, hazard rate functions, quantile 
function, the skewness, and kurtosis measures are studied. We found that the proposed model has considerable 
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flexibility and is inverted bathtub shaped hazard function. The maximum likelihood estimation (MLE) methods is 
used to estimate the model parameters. Two real data sets are analyzed to explore the applicability, suitability and 
flexibility of the proposed distribution and found that the proposed model is quite better fit than other well-known 
competitive lifetime models such as Generalized Rayeleigh, Chen, Generalized Exponential and Exponential Power 
distribution taken into consideration. We hope this purposed model may be an alternative in the field of survival 
analysis, probability theory and applied statistics.                       
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