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I. INTRODUCTION 

Recently, some attempts have been made to define new families of distributions to extend well known models and at 
the same time provide great flexibility in modeling data in practice. Several techniques have been employed to form 
a larger family from an existing distribution by incorporating extra parameters. 
 Half-Cauchy(HC) distribution provides an alternative to inverse-Gamma distribution as a default prior for a 
scale parameter in Bayesian hierarchical models, in particular, when a proper prior is necessary [1]. It is obtained 
from the standard Cauchy distribution by folding the curve on the origin so that only positive values can be 
observed. As a heavy tailed distribution, the HC distribution has been used as an alternative to the exponential 
distribution. 

The distribution introduced by Kumaraswamy [2] is quite flexible and has been little explored in the 
literature. It’s cumulative distribution function (c.d.f.) has a simple form 

   ; , 1 1 ;0 1,F x x x
        

where 0   and 0   are the two shape parameters. The corresponding density function is given by 

    11; , 1 ; 0, 0,0 1,f x x x x
           

which can be unimodal, increasing, decreasing or constant, depending on the parameter values. We consider the 
term ”Kw” distribution to denote the Kumaraswamy distribution advocated the KW distribution as a generator since 
its quantile function takes a simple form. In his paper they highlighted several advantages over beta distribution: 
simple normalizing constant, simple explicit formula for the distribution and quantile functions[3]. It does not 
involve any special functions for quantile function and random variate generation. 

In recent years, new classes of models have been proposed based on modifications of the existing one or 
two parameter models. Adding one or more parameters to a distribution makes it richer and more flexible for 
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modeling data. There are different ways for adding parameter(s) to a distribution. Such an addition of parameters 
makes the resulting distribution richer and more flexible for modeling data. 
 If G  denotes the c.d.f. of a random variable, [4] defined the KW G  distribution given by 

    ; , 1 1 ,F x G x
       

where 0   and 0   are two additional parameters whose role is to introduce skewness and to vary tail weights. 

Because of its tractable distribution function the KW-G distribution can be used quite effectively even if the data are 
censored. Correspondingly, the density function of this family of distributions has a very simple form 

         11
; , 1 .f x g x G x G x

   
      

 So, the KW-G distribution is obtained by adding two shape parameters    and    to the G   distribution. 

It contains distributions with unimodal and bathtub shaped hazard rate functions. Clearly, the KW density function 
is a particular case with  G x x . Let X  follows a Half-Cauchy(HC) distribution with parameter   with the c.d.f  

  12
; tan ; 0, 0,

x
G x x 

 
     
 

 

 the corresponding p.d.f. is given by 

   
  2

2
; ; 0, 0.

1

x
g x x

x x

 
 

 
  


 

A generalization of the HC distribution, named Beta Half-Cauchy distribution obtained through beta 
transformation was introduced by [5]. Few more generalizations of the HC distribution exist in the literature, 
namely, KwHC by [6] and Marshall-Olkin half-Cauchy (MOHC) by [7]. The Gamma-Half-Cauchy distribution was 
introduced by[8], [9]. The exponentiated half-Cauchy distribution may be considered as a sub-model  of  Beta Half-
Cauchy or Gamma-Half-Cauchy distributions.   

Ghosh defined and studied KwHC distribution as special case of the Kumaraswamy-G family of 
distributions by taking G  as Half-Cauchy distribution [6].  

The c.d.f of the KwHCcan be written as 

 

  2
; , , 1 1 arctan ; 0

x
F x x



  
 

         
    

  

where 0   and 0   are shape parameters and 0   is the scale parameter. When 1   and 1  , then the 

KW-Half-Cauchy distribution reduces to the Half-Cauchy distribution with parameter  . It also the given the 
characterization of the KW-Half-Cauchy distribution which establishes the relation between KW-Half-Cauchy and 
uniform distribution. 

If a random variable U  follows a uniform  0,1  distribution with parameters then  

   11
 1 1 1  

2
x tan u


      

 
  

follows the KW-Half-Cauchy with parameters ,   and   . 

 The KwHC distribution can be approximately symmetric, right-skewed or left skewed.  The KwHC 
distribution has a thicker right tail than the other well-known distributions and is thus appropriate for positively 
skewed data. Also, the KwHC hazard function can be a decreasing failure rate or upside down bathtub shapes.  

We do not find any systematic study classical as well as Bayesian on KwHC distribution in the literature.   
In recent decades, the Bayesian viewpoint has received frequent attention for analyzing failure data and other time-
to-event data, and has been often proposed as a valid alternative to traditional statistical perspectives. 

In this paper, we consider the estimation and prediction of the KwHC distribution under Bayesian 
framework. The computation of MLEs, approximate variances, and confidence intervals of the parameters for the 
KwHC distribution based on a complete sample are performed. For the Bayesian analysis we have assumed the 
uniform prior for the scale parameter and gamma priors for shape parameters[10].  Then the Gibbs sampling 
technique is applied to obtain the posterior samples using OpenBUGS software. Bayesian estimators of the 
parameters, posterior variances, and credible intervals are obtained using posterior sampls. We have obtained the 
Bayes estimates of the hazard and reliability functions, and their probability intervals are also presented. We have 
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applied the predictive check method to discuss the issue of model compatibility[11].  All computational tools are 
developed in OpenBUGS and R software A real data set is considered for illustration of the proposed Bayesian 
approach. 

II. MODEL ANALYSIS OF KWHC DISTRIBUTION 

The Cumulative distribution function of KwHC distribution with three parameters is given by 

  2
; , , 1 1 arctan ; 0,

x
F x x



  
 

         
    

 (1) 

where 0  , 0   and 0   are the parameters. The KwHC distribution will be denoted by ( , , )KwHC    .  

The probability density function is given by 
1 11 22 2

( ; , , ) arctan 1 arctan 1 ,
x x x

f x

   
     

                                             
 (2) 

where ( , , )> 0  
 
and 0.x      

 
Figure 1    The probability density function of KwHC distribution for 1   and different values of   and  . 

 The R functions dkw.halfCauchy()  and pkw.halfCauchy() given in [12]. It can be used for the computation 
of pdf and cdf respectively. Some of the typical KwHC density functions for different values of   and  for 1   

are depicted in Figure1. It is clear from this figure that the density function of the KwHC distribution can take 
different shapes. 



The Estimation And Prediction Of The Kwhc Distribution Under Bayesian Framework   31 

 
Figure 2    The hazard rate function of KwHC distribution for 1   and different values of and  . 

 
The reliability/survival function of KwHC distribution is 

2
( ; , , ) 1 arctan .

x
R x


  

 

            
 (.3) 

The R function skw.halfCauchy() computes the reliability/ survival function[12]. 
 

The hazard rate function of KwHC distribution is 

11 22
arctan 1

( ; , , ) .
2

1 arctan

x x

h x
x








  

  

 

           
       

       
    

 (4) 

  
Some of the typical KwHC hazard functions for different values of   and  for 1   are depicted in Figure 2. It 

is clear from this Figure that the hazard function of the KwHC distribution can take different shapes including the 
unimodel (upside down bathtub). The associated R function hkw.halfCauchy() [12].  Figure 2 exhibits the different 
hazard rate functions for KwHC distribution. 

The quantile function of KwHC distribution is given by 

  11tan 1 1 ; 0 1.
2px p p


 

     
 

 (5) 

For the computation of quantiles the R function qkw.halfCauchy() can be used[12].   
 
The  random deviate can be generated from ( , , )KwHC     by 

    11
tan 1 1 ; 0 1,

2
x u u


        

 (6) 

where u has the (0,1)U  distribution. The R function rkw.halfCauchy() generates the random deviate from 

( , , )KwHC    [12]. 



Ramesh Kumar Joshi , Vijay Kumar     32 

 
For model choice based on information criterion, the values of AIC and BIC can be computed using the R 

function abic.kw.halfCauchy() [12]. 

 

III. MAXIMUM LIKELIHOOD ESTIMATION (MLE) AND INFORMATION MATRIX 

 
In this section, we discuss the maximum likelihood estimators (MLE’s) of the KwHC distribution and their 
asymptotic properties to obtain approximate confidence intervals based on MLE’s. 

Let 1( , , )nx x x   be a random sample of size n from ( , , )KwHC    , then the log-likelihood 

function ( , , | )x    can be written as  

 

     

 

1

2

1 1

2
1

2
1 1 1

n
i

i

n n
i i

i i

x
, , | x n log n log nlog log arctan

x x
log arctan log



      
 


  



 

                
                  

         



 



 (7) 

Differentiating with respect to ,   and  , we have 

 

  

 
       

    

1

1

2

22
1 0

1 2

n

i
i

n
i i

i
i

n
nlog log arctan x

arctan x log arctan x

arctan x






  

  


  





       

        
 







   

1

2
1 0

n
i

i

xn
log arctan



   

               


  

and 
 

       

       
    

1
11 2 22

2 3
1 1

11 2

2
1

1 2
1 1

11 2
0

1 2

n n

i i i i i
i i

n i i i

i
i

n
x arctan x x x x

x arctan x x

arctan x







  

   

  
  



 





               

        
 

 





 . 

 Therefore, to obtain the MLE’s of ,  and  , we can maximize (7) directly with respect to ,  and 

 or setting these equations to zero and solving them simultaneously yield the maximum likelihood estimates 
(MLEs) of the model parameters. Numerical methods can be used to obtain the ML estimates of the parameters. For 
example, the Newton-Raphson iterative technique could be applied to solve the likelihood equations numerically. 

Let us denote the parameter vector by  , ,     and the corresponding MLE of  as  ˆ ˆ ˆˆ , ,    , 

then the asymptotic normality results in 

     1
3

ˆ 0, ( )N I      (8)  

where ( )I   is the Fisher’s information matrix given by 
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2 2 2

2

2 2 2

2

2 2 2

2

( )

E E E

I E E E

E E E

   


   

    

        
                    
 

        
                      

                              

  

  

  

 (9) 

In practice, it is useless that the MLE has asymptotic variance   1( )I  
because we do not know  .  Hence, we 

approximate the asymptotic variance by “plugging in” the estimated value of the parameters.  The common 

procedure is to use observed Fisher information matrix ˆ( )O   (as an estimate of the information matrix ( )I  ) given 

by 

 

2 2 2

2

2 2 2

ˆ2

2 2 2

2
ˆ ˆˆ( , , )

ˆ( ) ( )O H  

  

   

 
   

    



   
 

    
 

      
     
   
 
     

  

  

  

 (10) 

where H is the Hessian matrix,   , ,     and  ˆ ˆ ˆˆ , ,    . The Newton-Raphson algorithm to maximize the 

likelihood produces the observed information matrix. Therefore, the variance-covariance matrix is given by 

  1

ˆ

ˆ ˆˆ ˆ ˆ( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆˆ( ) cov( , ) ( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) ( )

var

H var

var
 

    

     

    





 
 
  
 
 
 

 (11) 

Hence, from the asymptotic normality of MLEs, approximate 100(1 )%  confidence intervals for  ,   and 

 can be constructed as 

 /2ˆ ˆ( )z var  /2
ˆ ˆ( )z var  and /2

ˆ ˆ( )z var   (12) 

where /2z  is the upper percentile of standard normal variate. 

 

IV. BAYESIAN MODEL FORMULATION 

 The Bayesian model is constructed by specifying the prior distributions for the model parameters ,  and 

 , and then multiplying with the likelihood function to obtain the posterior distribution function. 
 Probability Model :  ( | , , )f x     

 Prior distribution : ( , , )p     

 Data : 1( , , )nx x x   

Given a set of data 1( , , )nx x x  , the likelihood function is 

             

    

     

1

1

11 2

1 1

2
( , , | ) 1 2 arctan

arctan 1

n n n

i
i

n n

i i
i i

L x x

x x

 



    
 

 







 

                    
  

   
  
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Let ( , , )p    denotes the joint prior distribution of  ,   and   . The joint posterior is 

( , , | ) ( , , | ) ( ) ( ) ( )p x L x p p p          

Prior distributions: 
We assume the independent gamma priors for 1 1~ ( , )G a b and 2 2~ ( , )G a b , and uniform prior 

for 3 3~ ( , )U a b  as 

1
11 1 1

1 1
1

( ) e ; 0, ( , ) 0
( )

a
a bb

p a b
a

     


., 

2
12 2 2

2 2
2

( ) e ; 0, ( , ) 0
( )

a
a bb

p a b
a

     


, 

and 

3 3
3 3

1
( ) ;p a b

b a
   


. 

Posterior distribution: 
Combining the likelihood function with the prior via Bayes' theorem yields the posterior up to proportionality as 

   1 11 2
1 2 1 2 3( , , | ) 2 expna n a n np x b b T T T              

 where 

                        
1

1
1

1 2
n

i
i

T arctan x


 




       1

2
1

n

i
i

T arctan x







 and

    

   12

3
1

1
n

i
i

T x 




  .

 
 

The posterior is obviously complicated and no close form inferences appear possible. We, therefore, 
propose to consider MCMC methods to simulate samples from the posterior so that sample-based inferences can be 
easily drawn.  

Markov chain Monte Carlo draws samples by running a cleverly constructed Markov chain that eventually 
converges to the target distribution (called stationary or equilibrium) which, in our case, is the posterior distribution 

( , , | )p x   . 

There are many ways of constructing these chains, but all of them, including the Gibbs sampler . 

Gibbs Sampler : Algorithm 
For Gibbs sampler implementation, the full conditionals for ,  and   up to proportionality can be specified as 

(i) Full conditional distribution of the parameter    for given  ,   and x  

      11
1 1 2( | , , ) 2 expna np x b T T          

(ii) Full conditional distribution of the parameter   for given  ,   and x  

    12
2 1( | , , ) expa np x b T        

(iii) Full conditional distribution of the parameter   for given  ,   and x  

   1 2 3( | , , ) np x T T T       

We shall use OpenBUGS software to obtain posterior samples. As the KwHC distribution is not available 
in OpenBUGS, it requires incorporation of a module in ReliaBUGS[13] and [14] subsystem of OpenBUGS for 
KwHC distribution. A module dkwh.cauchy(alpha, beta, theta) is written in Component Pascal for KwHC to 
perform full Bayesian analysis in OpenBUGS using the method described in [15]. It is important to note that this 
module can be used for any set of suitable priors of the model parameters. Almost all aspects of the model in 
Bayesian framework can be studied using the developed module dkwh.cauchy(alpha, beta, theta) 
 
Gibbs Sampler : Implementation 

1. Select an initial value  (0) (0) (0) (0) , ,     to start the chain. 
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2. Suppose at the ith-step,   , ,    takes the value  ( ) ( ) ( ) ( ) , ,i i i i     then from full conditionals, 

we generate 
( 1)i  from  ( ) ( )| , ,i ip x    

( 1)i  from  ( 1) ( )| , ,i ip x       and 

( 1)i  from  ( 1) ( 1)| , ,i ip x    . 

3. This completes a transition from ( )i to ( 1)i   

4. Repeat Step 2, N  times. 
 
MCMC output : Posterior sample 

It is well known that rapid convergence is facilitated by choosing appropriate starting values. In order to 
guarantee the convergence and to remove the effect of the selection of initial value, the first ‘B’ simulated variates 
are discarded.  Also to reduce the effect of autocorrelation, select a sampling lag L > 1 after which the corresponding 

autocorrelation are low.  Consider  (1) ( ) ( ), , , ,j M     as the MCMC output (posterior sample) for the 

posterior analysis 

 ( ) ( ) ( ) ( ) , , ; 1, 2, ,j j j j j M      . 

Thus, MCMC output is referred as the sample after removing the initial iterations (produced during the 
burn-in period) and considering the appropriate lag, which can be used to develop the Bayesian inference.. 

The Bayes estimates of    , ,    , under the square error loss (SEL) function, are given by 

( ) ( ) ( )

1 1 1

1 1 1ˆ ˆˆ ; ;
M M M

j j j

j j jM M M
     

  
      

 The Bayes estimates under absolute and zero-one loss functions are posterior median and mode, 
respectively. 

V. DATA ANALYSIS 

Data Set : The real data set considered for illustration of the proposed methodology on KwHC distribution. The real 
data set represents the remission times (in months) of a random sample of 128 bladder cancer patients, [16]: 

I.  Classical Analysis 
The estimation of the parameter of proposed model is obtained by the method of maximum likelihood(ML) 

estimation. To check the validity of the model, we compute the Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted distribution function when the parameters are obtained by method of 
maximum likelihood. The following graphical methods are also used for suitability of the model under 
consideration:  (a)    Quantile-Quantile(QQ) plot and  (b)   Probability–Probability (PP) plot. 

Computation of MLE  
The maximum likelihood estimates (MLEs) are obtained by direct maximization of the log-likelihood 

function ( , , )   given in (3.2.1). The advantage of this procedure is that it runs immediately using existing 

statistical packages such as R[17]. We consider the software R through the Quasi-Newton algorithm to compute the 
MLEs. 

Figure 3 indicates that the likelihood equations have a unique solution. The Table 1 shows the ML 
estimates, standard error(SE)  and 95 % confidence Intervals for parameters ,  and  . The maximized value of 

loglikelihood is ˆ ˆˆ( , , ) -409.6779.     
 

Parameter MLE Std. Error 95% Confidence Interval 

alpha 1.3340 0.1580 (1.0243, 1.6437) 

beta 2.4351 0.4721 (1.5098, 3.3604) 
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Figure 4    The graph of empirical and fitted distribution function. 

 

theta 10.2867 2.3471 (5.6865, 14.8869) 
Table 1   MLE, standard error and 95% confidence interval 

The Akaike information criterion(AIC) and Bayesian information criterion(BIC) can be used to determine 
which model is most appropriate for the given data. For the given data set we have computed AIC=825.3557 and 
BIC=833.9118, [12]. 

B.  Model Validation 
To check the validity of the model we compute the Kolmogorov-Smirnov (KS) distance between the 

empirical distribution function and the fitted distribution function when the parameters are obtained by method of 
maximum likelihood is 0.0336 and the corresponding p-value is  0.9987.  We have plotted the empirical distribution 
function and the fitted distribution function in Figure 3.4. From the Figure 3.4, it is clear that the  KwHC distribution 
provides a nice fit to the given real data. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      
 

Figure 3  The profile negative log-likelihhod plots of alpha, beta and theta. 
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II. Bayesian Analysis  

OpenBUGS script for the Bayesian analysis of Kumaraswamy-Half-Cauchy distribution 

model 
           { 
   for( i in 1 : N )  
   { x[i] ~ dkwh.cauchy(alpha, beta, theta)   
    reliability[i] <- R(x[i], x[i])  
    f[i] <- density(x[i], x[i])   }   
   alpha ~ dgamma(0.001, 0.001) 
   beta ~ dgamma(0.001, 0.001) 
   theta~ dunif(0, 50) 
  } 
Data 

list(N=128, c(0.08, 0.20,...,46.12, 79.05)) 
Initial values  
   list(alpha=1.0, beta=1.0, theta=5.0)   
   list(alpha=5.0, Beta= 5.0, theta=20.0)  

 We assume the independent uniform prior for  3 3~ ,  U a b  and gamma priors for  1 1~ ,  G a b
 
and 

 2 2 ~ G a , b with hyperparameter values 

1 1 2 2 3 3( 0.001, 0.001), ( 0.001, 0.001)  and ( 0, 50.0). a b a b a b       

We run the model to generate two Markov Chains at the length of 30,000 with different starting points of 
the parameters. We have chosen initial values  1.0, 1.0, 5.0      for the first chain and 

 5.0, 5.0, 20.0      for the second chain. The convergence is monitored using trace and ergodic mean plots, 

we find that the Markov Chain converge together after approximately 2000 observations. Therefore, burn-in of 5000 
samples is more than enough to erase the effect of starting point(initial values). Finally, samples of size 5000 are 
formed from the posterior by picking up equally spaced every fifth outcome (to minimize the auto correlation among 
the generated deviates.), i.e. thin=5, starting from 5001.  
 Therefore, we have the posterior sample  

         ( ) ( ) ( )
1 1 1, , ; 1, ,5000j j j j      from chain 1     and    ( ) ( ) ( )

2 2 2, , ; 1, ,5000j j j j      from chain 2.  

 The chain 1 is considered for convergence diagnostics plots. The visual summary is based on posterior 
sample obtained from chain 1 whereas the numerical summary is presented for both the chains. 
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A. Convergence diagnostics 
 Before examining the parameter estimates or performing other inference, it is a good idea to look at plots of 
the sequential(dependent) realizations of the parameter estimates and plots thereof. The sequential plot of parameters 
is the plot that most often exhibits difficulties in the Markov chain. Figure 3.6 shows the sequential realizations of 
the parameters of the model. 

History(Trace) plot: 

 
Figure 5    Sequential realization of the parameters ,  and  . 

It looks like nice oscillograms around a horizontal line without any trend. The Markov chain is most likely to be 
sampling from the stationary distribution and is mixing well. 

Running Mean (Ergodic mean) Plot: 
Generate a time series(iteration number) plot of the running mean for each parameter in the chain. The running mean 
is computed as the mean of all sampled values up to and including that at a given iteration. The convergence pattern 
based on ergodic averages is shown in Figure 3.7 indicating the convergence of the chain. 
 

 
Figure 6    The ergodic mean plots for ,  and  . 

III. Posterior Analysis 

A. Numerical Summary  

The numerical summary is presented for  ( ) ( ) ( )
1 1 1, , ; 1, ,5000j j j j      from chain 1  We have 

considered various quantities of interest and their numerical values based on MCMC sample of posterior 
characteristics for KwHC distribution.  The MCMC results of the posterior mean, mode, standard deviation(SD), 
first quartile, median, third quartile, skewness and kurtosis of parameters ,  and   are displayed in Table 2 

 

Characteristics alpha lambda theta 

Mean 1.2755 3.0564 14.4484 

Standard  Deviation 0.1769 1.2118 7.3137 

First Quartile (Q1) 1.1500 2.2628 9.6853 

Median 1.2580 2.7490 12.4350 
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Third Quartile (Q3) 1.3793 3.4733 16.9200 

Mode 1.2091 2.4111 10.2710 

Skewness 0.6303 2.0197 1.8875 

Kurtosis 0.6646 6.4145 4.3969 

 
Table 2   Numerical summaries for KwHC distribution 

The advantage of using the MCMC method over the MLE method is that we can always obtain a 
reasonable interval estimate of the parameters by constructing the probability intervals based on the empirical 
posterior distribution. This is often unavailable in maximum likelihood estimation.   The algorithm described by [18] 
is used to compute the HPD intervals.. The width of the HPD is another way of measuring uncertainty of beliefs. If 
the HPD is wide, then beliefs are uncertain. If the HPD is narrow, then beliefs are reasonable. 

 

Parameter Symmetric Credible Interval HPD Credible Interval 

     alpha (0.9801, 1.670) (0.9436, 1.618) 

     beta (1.6550, 6.3381) (1.417, 5.471) 

     theta (6.227, 35.700) (4.809, 29.48) 

Table 3    95%  symmetric and HPD credible intervals 

B. Visual summary 
The visual graphs include the boxplot, density strip plot, histogram, marginal posterior density estimate and 

rug plots for the parameters. We have also superimposed the 95% HPD intervals.  
 

 

 

 

 
 
 
 
 
 
 
 
 

These graphs provide almost complete picture of the posterior uncertainty about the parameters. We have 

used the posterior sample  ( ) ( ) ( )
1 1 1, , ; 1, ,5000j j j j       to draw these graphs. 

Figure 7-(left panel) represents the histogram, marginal posterior density for the parameter  . Histograms can 
provide insights on skewness, behavior in the tails, presence of multi-modal behavior, and data outliers; histograms 
can be compared to the fundamental shapes associated with standard analytic distributions. The kernel density 
estimates have been drawn using R with the assumption of Gaussian kernel and properly chosen values of the 
bandwidths. 
 
We have shown the posterior mean, median and mode which are Bayes estimates under squared error, absolute error 
and zero-one loss functions loss, respectively. Figure 7-(right panel) shows the boxplot and density strip plot. The 
95% HPD interval is also superimposed.   
 

 
           Figure 7   Left panel   : Histogram and marginal posterior density,  

                  Right panel : boxplot, density strip and 95% HPD interval of  .  
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    Figure 8 Left panel   : Histogram and marginal posterior density,  

          Right panel : boxplot,  density strip and 95% HPD interval of  . 

 
  
The density strip shows a univariate distribution as a shaded rectangular, whose darkness at a point is proportional to 
the probability density. We have plotted the similar graphs for   and   displayed in Figure 8 and 9. It can be seen 

that  ,   and   show positive skewness. 

 
 

 
       Figure 9   Left panel   : Histogram and marginal posterior density,  

                 Right panel : boxplot,  density strip and 95% HPD interval of  . 

IV. Comparison with MLE 

 We have used graphical method for the comparison of Bayes estimates with ML estimates. In Figure 10, 

the density functions ˆ ˆˆ( ; , , )f x     using MLEs and Bayesian estimates (the posterior means), computed via 

MCMC samples, are plotted.It is evident from the Figure 10 that the MLEs and the Bayes estimates are quite close 
and fit the data very well. 
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Figure 10   The density functions using ML and Bayesian estimates 

 
 
 

A further support for this finding can be obtained by inspecting the Figure 11. where we have plotted 
th th th2.5 , 50 and 97.5 quantiles of the estimated density, it can be considered as evaluation of model fit, based on 

posterior sample,  ( ) ( ) ( )
1 1 1, , ; 1, ,5000j j j j     .  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 11   Density estimates 
 
We have computed the density function at each observed data point for 5000 posterior samples, using 

logical function density( ) in OpenBUGS  ( ) ( ) ( )
1 1 1; , , ; 1, ,5000 ; 1, ,128j j j

if x j i      . 

The density corresponding to MLE has been plotted using the “plug-in” estimates of the parameters. It 
shows that we have a fairly good model for the given data set.  

IV. Estimation of Hazard and Reliability functions: 

In this section, our main aim is to demonstrate the effectiveness of proposed methodology. For this, we have 
estimated the reliability function using posterior samples. Since we have an effective MCMC technique, we can 
estimate any function of the parameters. We have used the Kaplan-Meier estimate of the reliability function to make 
the comparison more meaningful. The Figure 12 (left panel), exhibits the estimated reliability function (dashed blue 
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line: th th2.5 and 97.5 quantiles; solid red line: th50 quantile) using Bayes estimate based on MCMC output and the 

empirical reliability function (black solid line). The Figure 12 (left panel) shows that reliability estimate based on  
 

 
Figure 12   Reliability function(left panel) and hazard function(right panel) estimate using MCMC  

MCMC is very close to the empirical reliability estimates.  The estimated hazard function (dashed blue line: 
th th2.5 and 97.5 quantiles; solid red line: th50 quantile) using Bayes estimate based on MCMC output has been 

displayed in the Figure 12  (right panel). 

V. Estimation of Hazard and Reliability  at  30 :    3.02X t  

Indeed, the MCMC samples may be used to completely summarize the posterior uncertainty about the 
parameters ,  and   through a kernel estimate of the posterior distribution. This is also true of any function of 

the parameters e.g. reliability and hazard functions. Suppose we wish to give point and interval estimates for 
reliability and hazard functions at the mission time t=3.02 ( at the 30th observed data point). 

We have computed the hazard and reliability functions at mission time t=3.02( at the 30th observed data 
point) for 5000 posterior samples, using logical functionhrf( ) and reliability( ), [12] in OpenBUGS. It can be 
computed directly using hazard and reliability functions given in (4) and (3) respectively. 

 ( ) ( ) ( )
1 1 13.02; , , ; 1, ,5000j j jh x j     and  ( ) ( ) ( )

1 1 13.02; , , ; 1, ,5000j j jR x j      

Alternatively, we can use R functions hkw.halfCauchy() and skw.halfCauchy() [12]. 

 

Figure 13  Visual summary of reliability(left panel) and hazard(right panel) at t=3.02 

The marginal posterior density estimates of the reliability (left panel) and hazard functions(right panel) and 
their histograms based on samples of size 5000 are shown in Figure 13 using the Gaussian kernel.  The 95% HPD 
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intervals are superimposed. It is evident from the estimates that the marginal distribution of reliability is negatively 
skewed whereas hazard is positively skewed.  

The MCMC results of the posterior mean, mode, standard deviation(SD), first quartile, median, third 
quartile, skewness, kurtosis, 95% symmetric and HPD credible intervals of reliability and hazard functions are 
displayed in Table 4.  The ML estimates of reliability and hazard function at t=3.02 are computed using invariance 

property of the MLE.  ML estimates  ˆ 3.02 0.1167h t   and  ˆ  = 3.02 0.7677R t  . 

Characteristics Reliability Hazard 

Mean 0.7625 0.1134 

Standard  Deviation 0.0301 0.0138 

First Quartile (Q1) 0.7425 0.1038 

Median 0.7630 0.1129 

Third Quartile (Q3) 0.7841 0.1223 

Mode 0.7661 0.1125 

Skewness -0.0852 0.4029 

Kurtosis -0.1385 0.5601 

95% Credible Interval (0.7029, 0.8189) (0.0881, 0.1422) 

95% HPD Credible Interval (0.7024, 0.8178) (0.0855, 0.1394) 

Table 4  Posterior summary for Reliability and Hazard functions at t=3.02 
 

VI.  Posterior Predictive Checks forModel compatibility 
 A natural way to assess the fit of a Bayesian model is to look at how well the  predictions from the model 
agree with the observed data [19]. We do this by comparing the posterior predictive simulations with the data.  
 There are several approaches available for the study of model compatibility in Bayesian framework. 
Predictive simulation is an easiest and flexible one. The basic idea of studying the model compatibility through 
predictive simulation is to compare the observed data or some function of it with the data that would have been 
anticipated from the assumed model called the predictive data. If the two data sets compare favorably, the assumed 
model can be considered to be an appropriate choice for the data in hand, [20]. 

. 

 
                    Figure 14   Posterior predictive distribution of (30)X  with corresponding observed value. 

 Modern Bayesian computational tools however provide straightforward solutions as one can easily simulate 
predictive samples if MCMC outputs are available from the posterior corresponding to the assumed model. Most of 
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the standard numerical and graphical methods based on predictive distribution can then be easily implemented to 
study the compatibility of the model. 

One of the best ways to assess model adequacy based on posterior predictive distributions is graphically. 
To obtain further clarity on our conclusion for the study of model compatibility, we have considered plotting of 

density estimates of.  (1) (2) (30) (127) (128), , , andX X X X X  replicated future observations from the model with 

superimposed corresponding observed data. For this purpose, 2000 samples have been drawn from the posterior 
using MCMC procedure and then obtained predictive samples from the model under consideration using each 
simulated posterior sample. The size of predictive samples is same as that of observed data. 

 

   

 

 

 
 

Figure 15  Posterior predictive distribution, 95% HPD interval of the  (1)X ,  (2)X ,  (127)X and 

 (128)X , corresponding observed values are marked as() on the axis. 
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The posterior predictive distributions based on replicated future data sets are shown in Figures 14 and 15. 
Here Figure 15 represents the estimates corresponding to smallest, second smallest, second largest and largest 
predictive observations, whereas the same for 30th smallest observations is shown in Figure 14. The corresponding 
observed values are also shown. 

The MCMC results of the posterior mean, median, mode of smallest and largest 

 (1) (2) (127) (128)and, ,X X X X  and (30)X are displayed in Table 3.5. 

 
 

 

 Observed Mode Mean Median 95% HPD 

X(1) 0.08 0.08 0.12 0.11 (0.027, 0.233)  

X(2) 0.20 0.21 0.27 0.25 (0.089, 0.465)  

X(30) 3.02 2.97 2.96 2.95 (2.273, 3.617)  

X(127) 46.12 42.71 51.72 48.67 (31.62, 80.54)  

X(128) 79.05 58.92 82.13 73.61 (39.08, 146.7)  

Table 5  Posterior characteristics of KwCH distribution 

 
As the Figures 14 and 15 shows, the posterior predictive distributions are centered over the observed 

values, which indicate good fit. In general, the distribution of replicated data appears to match that of the observed 
data fairly well. Overall, the results of the posterior predictive simulation indicate that model fits these data 
particularly well. 

VI.  CONCLUSION 

We have proposed KwHC distribution and discussed some of its properties using R software. We have 
obtained the MLE of the parameters and their asymptotic probability intervals. Then, we have discussed the Markov 
chain Monte Carlo (MCMC) method to compute the Bayesian estimates of the parameters, hazard and reliability 
functions of KwHC distribution based on a complete sample. We have obtained the probability intervals for 
parameters, hazard and reliability functions. We have presented the model compatibility via the posterior predictive 
check method.  We have applied the developed techniques on a real data set. Thus, the tools developed can be 
applied for full Bayesian analysis of KwHC distribution.  

To obtain further clarity on our conclusion for the study of model compatibility, we have considered 

plotting of density estimates of.  (1) (2) (30) (127) (128), , , andX X X X X  replicated future observations from the model 

with superimposed corresponding observed data. For this purpose, 2000 samples have been drawn from the posterior 
using MCMC procedure and then obtained predictive samples from the model under consideration using each 
simulated posterior sample. The size of predictive samples is same as that of observed data.  
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