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I. INTRODUCTION 

The transport phenomena of fluids over tube banks is a broad area of research today because of its numerous 
applications in heat and mass transfer equipment, filtration, polymer processing, porous media flow and foods and 
biological industries, etc. [1-2]. It is evident from the flow geometries of tube banks that the kind of flows which 
occurs are periodic in nature i.e. it repeats over the tube banks of certain length so called the periodic length. Such a 
process simplifies the problems to be solved numerically and experimentally as well so that the local and global 
characteristics of fluids can be investigated. Because, the above flows are found frequently in many industrial 
processes (e.g. flow of process stream in shell side of tubular heat exchangers, screens used to filter polymer melts 
and fluidized bed drying of fibrous materials, etc.), it has received great attention over the years [3-4]. In view of 
above, relevant available literature has been reviewed the following section.  

II. AVALAIBLE WORKS FOR FLOW OVER TUBE BANKS   

The available literature suggests that the most of the research is concerned with flow in porous media and tube 
bundles, perhaps the quantitative nature of flow in high porosity cylinder arrays is still a new area of research [5]. 
The triangular, square, rectangular and hexagonal array of cylinders are the main geometrical arrangements for the 
flow over tube banks which has been considered in the investigations [1-7]. Moreover, many dimensionless 
parameters such as Reynolds, Prandtl and Richardson numbers, fluid volume fractions, porosity/voidages of 
cylinders and permeability, etc. have been used in various ranges to display the numerous characteristics of the 
fluids investigated. Notwithstanding, the flow dynamics from such an industrially important geometries have 
attracted the great attention of researchers over the years, for instance, see Launder and Massey (1978) [8]. If the 
cylinders are arranged in square or hexagonal array, the method of Rayleigh (1892) [9] can be successfully applied 
to determine solution of linear set of algebraic equations. Exploiting the above information, numerous investigations 
have been made to understand the flow dynamics across the tube banks. For instance, steady and slow flow of an 
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incompressible viscous fluid across a square and hexagonal array of cylinders have been studied [5] numerically for 
the solution of model equations. It has been shown that the drag on a cylinder as a function of the volume fraction of 
the cylinders. Subsequently, the laminar viscous flow through regular arrays of cylinders in various geometrical 
arrangements was studied [2] for square, rectangular, triangular and hexagonal array of cylinders. The results show 
that the drags for the transverse flow is twice of the drag for longitudinal flow. Further, McPhedran (1986) [10] 
investigated the transport properties of cylinder pairs and of the square array of the cylinders. They have evaluated 
the drag coefficients for a perfectly conducting cylinder pair separated by unit potential difference using Greens 
theorem. The flow through fibrous media and tube bundles has been reviewed by Zukaukas (1987) [4]. He noted 
that the quantitative nature of flow in high porosity cylinder arrays (treating cylinder arrays as porous media) is still 
question of concern. Likewise, Singh et al. (1989) [11] investigated the stability of periodic arrays of cylinders 
across the flow stream by direct simulation for a horizontal array of infinitely long cylinders spaced periodically 
under the steady flow conditions (Re≤ 100). Further, Edward et al. (1990) [12] calculated the flow field within 
spatially periodic arrays of cylinders arranged in square and hexagonal lattices at higher Reynolds numbers (0 to 
200). They emphasized on low porosity of cylinders less than 0.8. Similarly, Chmielewski et al. (1990) [13] 
investigated the cross flow of elastic liquid through arrays of cylinders (triangular and rectangular array of cylinders) 
for the low Reynolds numbers (Re< 0.1). Georgiou et al. (1991) [14] studied the Newtonian and non-Newtonian 
flow in a channel obstructed by an antisymmetric array of cylinders and concluded that the tortuous geometry and 
rheology combine to produce significant viscoelastic effects with regard to both the flow field and resistance to 
flow. Subsequent study by Astrom et al. [3] presents the Newtonian flow through aligned fiber beds to develop the 
relationship in between the flow rate and pressure drop for the purpose of the composite processing. Further, 
Bruschke and Advani (1993) [15] examined the flow of generalized Newtonian fluids across a periodic array of 
cylinders in which the capillary model has been used to describe the permeability-porosity relationship for porous 
media. A scaling is suggested which allows to separate the effect of the fluid rheology and porosity on the resistance 
to flow. It is clear that all the above-mentioned studies are emphasized on low porosity and slow flow region.  
 

 Besides, further studies are focused on high porosities and medium to high inertial regions. For instance, 
the numerical simulations of forced convective incompressible flow through porous media has been presented by 
Amiri and Vafai (1994) [16] to investigate the various transport properties. Subsequently, Nagelhout et al. (1995) 
[17] have studied the permeability for flow normal to a sparse array of fibers which are visualized as circular 
cylinders arranged in square array. This study confirms the validity of the assumption of steady flow at very high-
volume fraction (as high as 0.99) of liquid in a square array at Reynolds number up to 40. Furthermore, Donald and 
Anthony (1997) [18] investigated the effects of fluid inertia on the pressure drop and on the magnitude of drag 
coefficients for Reynolds number up to 180. Their results for low Reynolds number (Re<<1) are consistent with that 
Sangani and Acrivos [5]. It can clearly be seen from the literature that none of the previous studies have explored the 
effects of periodicity on the heat transfer characteristics on the cylinder array. Though, Martin et al. (1998) [1] 
aimed to fulfill this gap and investigated the frictional losses and convective heat transfer in laminar cross flow for 
the sparse, periodic cylinder arrays in square and triangular pitch arrangement with fluid fractions ranging from 
0.80-0.99 and particle Reynolds numbers in the range of 3-160. They found that the frictional losses follow the 
Darcy’s law when the Darcian Reynolds number is of the order of one while significant non-Darcian effects are seen 
at higher Reynolds numbers. Subsequently, Bartoli et al. [19] have experimentally investigated the heat transfer 
from three cylindrical heaters to a water jet. The presented their results in the form of closure relations to delineate 
the dependency of Nusselt number (Nu) on the Reynolds (Re), Prandtl (Pr) and Grashof (Gr) numbers. Moreover, 
Vijaysri et al. (1999) [20] have studied the steady flow of power law fluid across an array of long circular cylinder 
by solving continuity and momentum equations using the finite difference method. The hydrodynamics of porous 
media is approximated by zero vorticity cell model to present the gross fluid dynamic parameters in terms of friction 
and pressure drag coefficients. Spelt et al. (2001) [21] have presented the numerical simulations of power law fluids 
through periodic arrays of aligned cylinders for both creeping flow and flow with finite inertia. It has been shown 
that despite the strong non-linearity of the equations of motion, the results for the drag coefficient can be explained 
with simple scaling arguments. Simultaneously, Shibu et al. (2001) [22] predicted the drag on cylinder for the range 
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of 1≤Re≤500; 1≥ n ≥0.5 and cylinder voidages of 0.4 and 0.5. It is noticed that the resistance to flow for shear 
thinning fluid is reduced for the flow of a Newtonian fluid under identical conditions. Next, Alococer and Singh 
(2002) [23] have numerically investigated the motion of viscoelastic liquid passing through two-dimensional 
periodic arrays of cylindrical particles using the finite element method. They have shown that the permeability and 
viscoelastic stress distribution is a function of dimensionless relaxation time and wave number. In parallel works, 
Arora et al. (2002) [24] experimentally examined the purely inelastic instabilities in periodic arrays of closely 
spaced cylinders (PAC). The test geometries have the same wavelength and amplitude associated with the periodic 
variation in the cross-sectional area. Their pressure measurement shows temporal fluctuations that appear when 
Weisenberg number exceeds approximately 0.7 and 1.1 for PC and PAC geometries, respectively. Woods et al. 
(2003) [25] explored the creeping flows of power law fluids through periodic elliptical cylinders based on the 
numerical simulations and lubrication theory. The apparent permeability values obtain for on-axis flows of power-
law fluids are shown to obey a simple scaling, which relates the apparent permeability tensor for power-law fluids to 
the corresponding permeability for Newtonian fluids. They summarized their results in the form of closure relations 
for the apparent permeability tensor and velocity variances for off-axis flows of power-law fluids through arrays of 
elliptical cylinders for a range of aspect ratios using look-up graphs for only a few scalars.  

Subsequent investigation of Spelt et al.(2005a) [6] explored the flow of inelastic non-Newtonian fluids 
through arrays of aligned cylinders for creeping flow. Similar to Woods et al. [25], the numerical results have been 
presented along with the lubrication theories for the flow of truncated power law fluids through square and 
hexagonal arrays. The strong dependence steady state drag coefficient on the power law index was shown to be 
caused by the choice of velocity and length scale in the definition of the drag coefficient which is useful for 
understanding of other inelastic non-Newtonian fluid flow. Further, Spelt et al. (2005b) [7] continued his work to 
investigate the flow of inelastic non-Newtonian fluids through arrays of aligned cylinders for inertial effects for 
square arrays. Also, the local heat transfer and fluid flow conditions based on drag coefficients (CD) and Stanton 
number have been studied by Hovart et al. 2006 [26]. They concluded that the drag coefficients and Stanton number 
monotonically decreases with increase in Re. Gamrat et al. (2008) [27] studied the heat transfer phenomena over 
banks of square rods in aligned and staggered arrangement with porosity in the range of 0.44-0.88 and focused on 
low Re flow (0.05-40). They primarily focused on the thermal equilibrium in a porous medium. It was shown that 
the heat transfer in the array of rods was insensitive to the highest values of Reynolds and Prandtl numbers and 
lowest values of Nusselt number. Further, Tamayol and Bahrami (2009) [28] have presented the viscous 
permeability of fibrous porous media. Due to random nature of porous microstructures, determination of exact 
permeability of real fibrous media is impossible, however, it agrees well with the experimental data for the ordered 
unit. Additionally, Geoffrey et al. (2010) [29] have experimentally investigated the flow of worm-like micelle 
solutions through a periodic array of cylinders. By systematically varying the Deborah number, the flow kinematics, 
stability and pressure drop were measured. The pressure drop was found to decrease initially due to the shear 
thinning of the test fluid, and then exhibit a dramatic upturn as other elastic effects begin to dominate.  
 

Moreover, many investigations has been done to display the various features such as   permeability, 
effective viscosity,  stability,  inelastic instabilities, pressure drop, etc. [30-40]. For instance, Yazdchi et al. (2011) 
[30] used finite element model to predict the permeability in the viscous incompressible flow through a regular array 
of cylinders/ fibers array. Their results show that the immobile circle and ellipses have lowest and highest 
permeability respectively. Subsequently, Quesada and Ellero (2012) [31] presented the numerical study of flow of a 
viscoelastic liquid around a linear array of cylinders confined in a channel. The dimensionless drag force acting on 
the cylinder is observed to be in good agreement for a wide range of Weissenberg number up to 1.5. Likewise, 
James et al. (2012) [39] has studied the slow flow of Bogger fluids through fibrous porous media which employs 
square array of parallel cylinders for the solid volume fractions of 2.5%, 5% and 10% and Reynolds number less 
than 0.1. Measurements were made with glycerol /water mixture to establish an inelastic baseline for the Deborah 
number in the range of 0.5-4. Recently, Gillissen (2013) [40] investigated viscoelastic polymer solution flow 
simulations through a periodic, hexagonal array of cylinders. The simulated, non-monotonic behavior of the 
effective viscosity as a function of the Weissenberg number (We) is in qualitative agreement with experiments. 
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Similarly, Tahseen et al. (2013) [41] have studied flow of fluids over the staggered geometry of circular cylinders to 
analyze the thermal features in the range; 25 ≤ Re ≤ 250, pitch to diameter ratio of 1.25, 1.5, 2 and at a Prandtl 
number of 0.71. The velocity and temperature fields, Nusselt numbers, etc. have been assessed. Further, Fornarelli et 
al. (2015) [42] utilized 6 in-line circular cylinders to observe the flow and heat transfer for Reynolds and Prandtl 
numbers of 100 and 0.7(air), respectively and cylinder spacing of L/D = 3.6 and 4. A transitions were seen for both 
of the momentum and heat transfer. Afterward, Crowdy (2016) [43] examined the flow across a periodic array of 
cylinders. A new transform technique and solutions are presented using set of coefficients of suitable linear systems. 
Then, Mangrulkar et al. (2017) [44] studied the flow dynamics and thermal natures for cross-flow in the tube banks 
in the staggered arrangementwith splitter plate for the high Reynolds numbers upto 14500. Using splitter plate 
improves the heat transfer and decreases the pressure drop than the bare cylinders. Additionally, Kumar and Jayadev 
(2017) [45] studied the flow and heat transfer features over circular tubes in cross-flow. They observed three 
different flow shedding by changing the flow rate and blockage ratios. Besides, many studies of tube bundles have 
used the different cell models such as cell vorticity and free cell models to assess the drag coefficients and local and 
average Nusselt numbers etc. [46-49].  

 
In summary, the critical review of the available literature for flow over tube banks in various arrangements 

reveal that the momentum and heat transfer characteristics are explored for the various ranges of flow and heat 
transfer governing parameters. Limited results have also been presented for the power-law fluids, bogger fluids and 
polymeric and viscoelastic fluid. It is also be highlighted here that the non-Newtonian flow-based study have 
utilized the approximated geometrical models such as cell vorticity models in addition to whole computational 
domain. In fact, the literature accounts for the detailed insights of the global engineering parameters such as the drag 
coefficient (CD), pressure loss, permeability (K), Nusselt number (Nu), etc. but they are limited to creeping flow, 
laminar flow and low porosity of the cylinders.  

 

III. CONCLUSIONS 

 Based on the critical review, it has been concluded that most of the available studies are concentrated on Newtonian 
fluids as compared to non-Newtonian fluids to reveal the various characteristics using tube banks geometries. 
Further, these studies have used mostly steady state and two-dimensional flow in in-line array of cylinders. 
Therefore, its appropriate to mention herein that this literature review suggest various gaps to study further to gain 
more insights of flow kinematics. Some of the areas which could be the future scope of research work may be the 
various types of cylinder arrangements like triangular, rectangular, hexagonal with in-line or staggered 
configurations for high to low fluid volume fractions or the porosity of the cylinders. The steady and unsteady flow 
conditions in 2-D and 3-D using varieties of fluids can also be considered. So, it depends on the investigator or the 
researcher that what kind of combination he chose to investigate. Overall, a rigorous research works are needed to 
know the flow dynamics of fluids over the tube banks. 
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