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I. INTRODUCTION 

       Open-loop unstable processes are much more difficult to control than that of the stable processes. The difficulty 
increases when the process contains a time delay. Extensive information on the physical significance of the unstable 
systems in the context of aero planes has been given by Stein [1]. Desired closed-loop performance cannot be 
achieved with the conventional proportional-integral-derivative (PID) controllers for any adjustable parameters of 
the PID parameters [2]. Time delays occur frequently in process control problems, because of the distance velocity 
lags, recycle loops, and composition analysis loops, or in the approximation of higher-order systems with a lower-
order system with a time delay. The performance specifications that are usually achieved for stable systems are 
difficult to achieve for unstable systems. The performance of the closed loop response for such processes exhibits 
large overshoots and settling times. The dynamics of many processes can be represented by first or second order 
processes plus time delay. For unstable first order plus time delay (UFOPTD) processes, the existence of a right-half 
plane pole and time delay makes it difficult to stabilize the system, particularly with the conventional proportional-
integral/proportional-integral derivative (PI/PID) controllers. The controller design methods for the UFOPTD 
processes have been addressed by many researchers [3-8]. Many chemical and biological systems exist whose 
dynamics also show second-order behavior. These types of systems can be modeled as open-loop unstable second-
order plus time delay (USOPTD) models. Controlling these types of processes is difficult, and this difficulty 
increases when the USOPTD model contains a positive or negative zero. Controller design methods for unstable 
second-order processes is described by Huang and Chen [9], Lee et al. [10] , Yang et al. [11] , Wang and Cai [12], 
Kwak et al. [2], Tan et al.[13], Lu et al. [14], and Liu et al. [15], Wang and Hwang [16]. Some of the recently 
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reported methods use a two-degrees-of-freedom control structure with a greater number of controllers and also with 
great complexity in the design of controllers. Recently, Rao and Chidambaram [17] have proposed a controller 
design method for USOPTD processes with two RHP poles and a zero. 
 
Direct synthesis method is a well know technique for design of controllers and the main advantage of this method is 
that the desired output behavior of the closed loop can be specified as a trajectory model based on the process to 
design the required form of the controller [18]. Many design methods have been proposed in the literature based on 
direct synthesis method for unstable processes. Approximation of the time delay parameter places major role to 
obtain the controller structure in direct synthesis method. Many of the existing design methods make use of first 
order Pade’s approximation for time delay to derive the controller parameters. In this work, an attempt is made by 
considering different type of approximations which includes Taylor’s 1st and 2nd order, Pade’s 1st, 2nd and ½ order 
for the time delay term to obtain improved performance. For clear illustration, the paper is organized as follows. 
Theoretical developments and design is given in section 2 followed by stability and robustness studies in section 3. 
Simulation studies are explained in section 4 and conclusions are presented in section 5. 
   

II. THEORETICAL DEVELOPMENTS  

The closed-loop control structure is shown in Figure 1, where Gp(s) is the process transfer function and Gc(s) is the 
transfer function of the controller. The closed-loop transfer function for the set-point changes is given by 

                                                                              (1) 

                                                                                                                             
From eq 1, using the direct synthesis method, the controller expression is obtained as 

                                                                 (2)  

                                                                                                                                     
Here, (y/yr) d is the desired closed-loop transfer function for a set-point change. The desired closed-loop transfer 
function should be assumed such that the resulting controller is realizable 

A. Controller design for UFOPTD processes –  

Typical UFOPTD processes exist in most of the chemical and biological systems can be represented by the 
following transfer function model. 

                                                                                                                                                          (3) 

                                                                                                                  
For direct synthesis method, the desired closed-loop transfer function is assumed as 

                                                                                                            (4)                                                              

From eq 3 & 4, the controller is obtained as 

                                                                                                                         (5) 

Based on the different types of approximation used for the time delay term in eq 5, the controller expressions are 
obtained. Here, Pade’s 1st, 2nd and ½ order approximations, Taylor’s 1st and 2nd order for time delay term are 
considered.  
Case-1: Pade’s ½ order 

Pade’s ½ order approximation is defined by the following equation 

                                                                                                                               (6)                                            

With this approximation, the controller (eq.5) can be approximated in the form of 

                                                                                                                                        (7)                                                                                                                          
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The denominator term in eq 7, x1s
3 + x2s

2 + x3s +1, can be factorized as 

                         x1s
3 + x2s

2 + x3s +1= (1-τs) (1+β1s+β2s
2)                                                                 (8) 

Upon equating the corresponding coefficients on both sides of eq 8, we get the coefficients η, β1, and β2 as                                                                     

            2 2 2 2
1 2[(6 8 2 ) / ], ( ) /h h                                                                                                  
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Thus, the final controller Gc(s) form is obtained as 
 

                                                                                                                                  (9)                                        

Where Kc =-6η/ (kph), τI =η, 
2

1 22 / 3, / 6      and λ is the tuning parameter. 

Case-2: Pade’s 1st order 

Pade’s 1st order approximation is defined by the following equation 

                                                                                                                                                                                    (10)                                                                                                                         

 

With this, the controller is obtained as 

                                          (11)                                                                                                                                   

                                                                                                                                     

Where 

The denominator term in eq 11, x1s
2 + x2s +1, can be factorized as 

                                               x1s
2 + x2s+ 1= (1-τs) (1+βs)                                                    (12) 

Upon equating the corresponding coefficients on both sides of above eq 12, we get the coefficients η, β and α as 

                2 20.5 / , 0.5 , [ (1 0.5 / ) ( 2 ) ] / ( 0.5 )h                         

With that the final controller Gc(s) form is obtained as 

 

                                                                                                                                 (13)    

Where Kc = -η/(kph), τI =η in which λ is the tuning parameter. 

Case-3: Pade’s 2nd order 

Pade’s 2nd order approximation is defined by the following equation 

            

                                                                                                                                                                                  (14)         

With this the controller is obtained as 

                                                                                                                                                                                  (15)    
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The denominator term in eq 15, x1s
3 + x2s

2 + x3s+ 1, can be factorized as 

                x1s
3 + x2s

2 + x3s+ 1= (1-τs) (1+β1s+ β2s
2)                                                                          (16) 

Upon equating the corresponding coefficients on both sides of eq 16, we get the coefficients η, β2, and β1 as                                                       

2 2 2
1 2( 0.5 ) / , / 12     h h          

   2 2 2 2 2 2 2[ 6 12 ( / ) 2 12 24 12 ] / (12 6 )                                                                
Thus, the final controller Gc(s) form is obtained as 

     

                                                                                                                                (17) 

Where Kc = -η/ (kph), τI =η, 1 / 2  , 2
2 /12  and λ is the tuning parameter.  

Case- 4: Taylor’s 1st order 

Taylor’s 1st order approximation is defined by the following equation 

                                                                                           (18) 

With this approximation, the controller (eq.5) can be approximated in the form of 

 

                                                                                                                                (19)                                                                                                                         

                                                                                                                                                                                                                                                                         
By equating the denominator term in eq 19 as xs +1= (1-τs), the coefficient η is obtained as 

   
                                     

2 2  
 

 


                                                                                                                       

With that the final controller Gc(s) form is obtained as 

 

                                                                                                                               (20)                

Where Kc =-η/ (kph), τI =η, and λ is the tuning parameter.                                                      
Case-5: Taylor’s 2nd order 

Taylor’s 2nd order approximation is given by the following equation 

                                                           (21)                                                                                                                            

With this, the controller is obtained as 

                                     (22)                                                                                                                                   

                                                                                                                                 

 

The denominator term in eq 22, x1s
2 + x2s +1, can be factorized as 

                                                             x1s
2 + x2s+ 1= (1-τs) (1+αs)                                                       (23) 
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Upon equating the corresponding coefficients on both sides of above eq 23, we get the coefficients η and α as 

 2 2 2 2 20.5 / , [2 4 2 ] / ( 2 2 )h                     

With that, the final controller Gc(s) form is obtained as 

  

                                                                                                                               (24)                                              

Where Kc = -η/(kph), τI =η in which λ is the tuning parameter. 

All the controllers structures corresponding to the time delay approximations is given in Table 1 for clear 
illustration. 
B.  Controller design for USOPTD processes          
The typical USOPTD processes exist in most of the chemical and biological systems can be represented by any of 
the following transfer function models: 

                                                     
  1 2

( )
1 1

s
p

p

k e
G s

s s



 




 

                                                        (25)     

                                                              
  1 2

( )
1 1

s
p

p

k e
G s

s s



 




 

                                                                     (26) 

                                                              
 

( )
1

s
p

p

k e
G s

s s










                                                                                   (27) 

Of all the processes, the one that is difficult to control is the USOPTD process with two RHP poles. For 
generalization, the process considered for the design of the controller is 
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                                                                            (28) 

Where a1 > 0, a2 < 0, and the open-loop RHP poles of Gp(s) may be real or complex. 

In eq. 2, the desired closed-loop transfer function should be assumed such that the resulting controller is realizable 
according to eq. 28. The desired closed-loop transfer function is assumed as  
 

                                                                                                                                                                                    (29) 

 

From eq 2, the controller is obtained as 
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Different types of approximations are considered for the time delay term in eq 30 and the controller expressions are 
obtained. 
Case-1: Pade’s ½ order 

Using eq 6, the controller (eq.30) can be approximated in the form of 
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1 1
1

1c c
i

G k
s s 

         

 
 

2
2 1

3

1( )

( ) 1

s

r

s s ey s

y s s

 



 




3 2 3 2 2 3 2 2
1 2 3 218 6 6 , / , (4 3 ) / , (6 12 3 2 ) /h x h x h x h                      



Enhanced Performance With Pid Controllers And Lead/Lag Compensators For Unstable Processes With Time Delays  026 

 

The denominator term in eq 31, x1s
4 + x2s

3 + x3s
2 +x4s+1, can be factorized as 

                              x1s
4 + x2s

3 + x3s
2+x4s+1= (a1s

2+a2s+1) (1+β1s+β2s
2)                                                      (32) 

Upon equating the corresponding coefficients on both sides of eq 32, we get  

a1β2=x1, a1β1+a2β2=x2, a1+a2β1+β2=x3, β1+a2=x4 

From the above-mentioned relations, the coefficients n2, n1, β2 and β1 are obtained as 
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            2
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With that the final controller Gc(s) form is obtained as 

                                       (33) 
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Case-2: Pade’s 1st order 

From eq 10, the controller (eq.30) is obtained as                                                                                      
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 The denominator term in eq 34, x1s
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The final controller Gc(s) form is obtained as 

                                                                                                                                                                                    (36) 

    

Where Kc = η1/ (kph), τI = η1, τD= η2/η1, 0.5   and λ is the tuning parameter. 

 
 

 

Case-3: Pade’s 2nd order 

Here, using eq 14, the controller (eq.30) is approximated as 
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Thus, the final controller Gc(s) form is obtained as 
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Case-4: Taylor’s 1st order 

Using eq. 18, the controller is obtained as 
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Where                                                                                                                               
The denominator term in eq 41, x1s

2 + x2s +1, can be equated to  
                                                      x1s

2 + x2s +1= a1s
2+a2s+1                                                                       (41) 

Upon equating the corresponding coefficients on both sides of eq 41, we get  
a1=x1, a2=x2 

From the above-mentioned relations, the coefficients n2 and n1 are obtained as 
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Thus, the final controller Gc(s) form is obtained as 
                                                                                                                                                                                    (42) 

 
 
Where Kc = η1/ (kph), τI = η1, τD= η2/η1 and λ is the tuning parameter. 
 
 

Case-5: Taylor’s 2nd order 

From eq 21, the controller is approximated in the form of 
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 The denominator term in eq 43, x1s
3 + x2s

2 + x3s +1, can be factorized as 

                                                   x1s
3 + x2s

2 + x3s +1= (a1s
2+a2s+1) (1+αs)                                                  (44) 

Upon equating the corresponding coefficients on both sides of eq 44, we get  

a1α=x1, a1+a2α= x2, α+a2= x3 

From the above-mentioned relations, the coefficients n2, n1, and α are obtained as 
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Thus, the final controller Gc(s) form is obtained as 

 

                                                                                                                                                                                    (45) 

Where Kc = η1/ (kph), τI = η1, τD= η2/η1 and λ is the tuning parameter. 

Because there exists always a tradeoff between the nominal performance and robust performance, the tuning 
parameter (λ) must be tuned according to the desired choice. The derived controller structures are given in Table 2. 

C. Set-Point Weighting 

The PID controller designed based on the direct synthesis method usually introduces a zero in the closed-loop 
transfer function. This closed loop transfer function zero introduces an overshoot for the servo response [19, 20]. To 
reduce the undesirable overshoot, set-point weighting is suggested [21]. Hence, in the present work, set-point 
weighting is considered to reduce the overshoot. With the set-point weighting, the PI controller can be implemented 
in the form of  
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With the set-point weighting, the PID controller can be implemented in the form of  
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1 de
u(t)= k (εy  - y)+ e dt+ τ

τ dt
                                      (46b)                                   

Where ε is the set point weighting parameter and its range is 0 < ε < 1. The set-point weighting parameter should be 
selected such that the closed-loop response should give less overshoot and settling time. Based on many simulation 
studies on different types of UFOPTD and USOPTD processes, ε is recommended as 0.1. 
 
 
 
 

III. STABILITY AND ROBUSTNESS 

For any closed-loop control system, it is necessary to analyze the stability and robustness in the presence of model 
uncertainties. The types of uncertainties considered here are the parametric uncertainties such as uncertainty in 
process gain, time constant, and time delay. The closed loop system (Figure 1) is robustly stable if and only if [22] 

               
                                                 ml jω  T jω 1              ω - ,< ∀ ∞∞                                                                (47) 

Where T(s=jω) is the complementary sensitivity function and lm(s=jω) is the bound on the process multiplicative 
uncertainty. The process uncertainty can be represented as  

                                                  
p m

m
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G (jω)                                                                       (48) 

Where Gm (jω) is the model of the unstable process.  
For UFOPTD processes, If uncertainty exists in the time delay, then the tuning parameter should be selected such 
that 

                   -Δθs
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If the uncertainty exists in the gain, then the tuning parameter should be selected in such a way that 
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Similarly, if the uncertainty exists in τ, then by similar analysis, the value of λ should satisfy the constraint 
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Also, to ensure robust closed loop performance, the constraints to be followed by the sensitivity and complementary 
sensitivity functions are [22] 

              
                                                        m ml ( jω )T( jω )+w ( jω )S( jω )) <1                                    (52) 

Here, wm (jω) is the uncertainty bound on the sensitivity function which is given as S(jω) = 1-T (jω). Hence the 
tuning parameter has to be selected such that the resulting controller should satisfy the robust stability and robust 
performance constraints (eqs 47 & 52). 
 
A. Selection of the tuning parameter (λ): 

It is well-known that there is always a tradeoff in selecting the desired closed-loop tuning parameter (λ). Fast speed 
of response and good disturbance rejection are favored by choosing a small value of λ. However, stability and 
robustness are favored by a large value of λ. Hence, the choice of λ is entirely based on the experience of the 
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operator with the control system. Based on many simulation studies, it is observed that the starting value of λ can be 
considered around the process time delay. If both nominal and robust control performances are achieved with this 
value, then this value for λ can be taken as the final value. If not, the value should be increased slightly till the 
nominal and robust control performances are achieved. To have clear guidelines for selection of λ, in the present 
work, systematic analysis is carried out by using maximum sensitivity (Ms) as the performance index. Ms is also a 
robust performance measure like Gain margin (GM) and Phase margin (PM) and is related to these margins as [23]  

   11 , 2sin 1 2  s s sGM M M PM M  

In the present work, the process time delay to process time constant ratio (θ/τ) is varied and corresponding Ms values 
are plotted. The λ value is chosen accordingly for required value of Ms. If the θ/τ ratio is varied further more we 
have to retune the controller for good set point tracking and robust performance. 
 

IV. SIMULATION RESULTS 
 
Simulation studies have been carried out on various UFOPTD and USOPTD processes and observed that the 
performance of the controllers obtained from Taylor’s 1st and 2nd order approximations for the time delay provide 
oscillatory responses in all the cases. Hence, simulation results are provided here for other controller structures 
 
Example-1:  
                An UFOPTD process with kp= 1, τ = 1, and θ = 0.4 is considered here. For this process, the controller 
settings are calculated for the proposed method from eqs. 9,13,17. The tuning parameter is selected as λ = 1 and the 
controllers are obtained as Kc = 1.9341, τI = 4.9692, α1 = 0.2667, α2 = 0.0267, β1 = 0.1349, β2 = 0.0104 (Pade’s ½ 
order), Kc = 1.9231, τI = 5.0, α = 0.2, β = 0.0769 (Pade’s 1st order), Kc = 1.9349, τI = 4.9672, α1 = 0.2, α2 = 0.0133, β1 

= 0.0677, β2 = 0.0052 (Pade’s 2nd order). Set point weighting is considered as ε = 0.1. With these controller settings, 
the performances of the three approximations are compared by considering a unit step input at time t = 0 and a 
negative step disturbance of magnitude 0.1 at t =10 sec respectively. Figure 2 shows the responses for perfect model 
parameters. From the responses one can observe that all the three approximations provide almost same performance. 
Perturbations of +20% in KP, θ and -20% in τ are considered and the corresponding responses are shown in Figure 3. 
Here Pade’s 1st order shows oscillatory responses and Pade’s 2nd order shows better performances than Pade’s ½ 
order. It is also observed that for a higher perturbation in the process parameters, Pade’s 2nd order is providing 
further better responses. For quantitative comparison, integral of absolute error (IAE) is considered and are given in 
Table 3. It can be observed from the IAE values that Pade’s 2nd order method gives lesser IAE values.  

To analyze the selection of λ for robustness, analysis has been carried out by selecting peak value of the 
sensitivity function (Ms). Figure 4 shows the variation of Ms for different values of θ/τ for various values of λ for 
Pade’s ½ order. Figure 5 shows the variation of Ms for different values of θ/τ for various values of λ for Pade’s first 
order and Figure 6 shows the variation of Ms for different values of θ/τ for various values of λ for Pade’s 2nd order. 
It can be observed that from Figures 4-6 that, for lower values of θ/τ, Ms values are less indicating the stable 
response. For lower values of λ, Ms values are high indicating non-robust responses. Hence to obtain robust 
responses, selecting the tuning parameter as λ = 2 provides robust performances. Thus, it can be observed that one 
can go for higher values of λ to obtain robust control performances. To analyze the superiority of the methods, Ms 
values are plotted for different values of θ/τ with λ = 1 and are shown in Figure 7. It can be observed that 1st order 
and ½ order (graphs coinciding) approximation shows higher values of Ms and hence is not recommended. As 2nd 
order approximation shows lesser values, this is recommended.  

For comparison with previous method, method of Shamsuzzoha and Lee [24] is considered and designed 
the controllers. Pade’s 2nd order method is considered for the proposed method because it provides improved 
performances than that of other approximations. To have the same closed loop tuning parameter, λ = 1 is considered 
for both the methods. The controller parameters obtained for Shamsuzzoha and Lee [24] are Kc = 0.0354, τI = 
0.2667, τD = 0.1, a = 10.9346, b = 0.2986, α = 10.9346. Figure 8 shows the closed loop responses for a unit step 
input at time t = 0 and a negative step disturbance of magnitude 0.1 at t =15 sec respectively for perfect model 
parameters. The proposed method shows improved performances. To evaluate the closed-loop performance in the 
presence of the plant model mismatch, perturbations of +20% in KP ,+10% in θ and -10% in τ are considered and the 
corresponding responses are shown in Figure 9. Here also, the proposed method gives improved performances. For 
quantitative comparison, IAE values are considered and are given in Table 4. It can be observed that the proposed 
method (with Pade’s 2nd order approximation) gives lesser IAE values when compared with that of Shamsuzzoha 
and Lee [24] method, who have already shown the advantage of their method over many methods.  
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Example-2: 

 Here, an USOPTD process with two unstable poles is (eq. 26) considered where KP = 2, a1 = 3, a2 = -4 and θ = 0.3. 
The tuning parameter is selected as λ = 1.5 and the controller parameters are obtained as Kc = 0.4367, τI = 2.2379, τD 

= 7.9787, α1 = 0.2, α2 = 0.015, β1 = 0.1098, β2 = 0.0066 (Pade’s ½ order), Kc = 0.4289, τI = 2.2163, τD = 8.087, α = 
0.15, β = 0.0653 (Pade’s 1st  order), Kc = 0.4372, τI = 2.239, τD = 7.9732, α1 = 0.15, α2 = 0.0075, β1 = 0.0594, β2 = 
0.0033 (Pade’s 2nd  order). Set point weighting is considered as ε = 0.1. With these controller settings, the 
performances of the three approximations are compared by considering a unit step input at time t = 0 and a negative 
step disturbance of magnitude 0.1 at t =30 sec respectively. Figure 10 shows the responses for perfect model 
parameters. From the responses one can observe that all the three approximations provide almost same performance. 
Perturbations of +25% in KP, +10% in θ and -20% in τ1, τ2 are considered and the corresponding responses are shown 
in Figure 11. Here also Pade’s 2nd order is gives better performances. It is also observed that for higher perturbations 
in the process parameters, Pade’s 2nd order gives better performance. Figure 12 shows the variation of Ms for 
different values of θ/τ with λ = 1.5. It can be observed that 1st order approximation shows higher values of Ms and 
hence is not recommended. Pade’s ½ order approximation shows higher values when compared to that of 2nd order 
and hence 2nd order approximation for the time delay term is recommended. To analyze the robustness further, 
robust stability condition is verified for uncertainty in time delay. Figure 13 shows the magnitude of complementary 
sensitivity function for uncertainties in time delay from 10% - 50%. It can be observed that the robust stability 
condition is satisfied according to eq. 49. 
 
Example-3:  

Here, an USOPTD process (eq. 25) with one unstable pole and one stable pole is used where KP =1, τ1= 2.07, τ2=5, 
and θ= 0.932. The parameters obtained after converting to eq. 28 are KP=1, a1= -10.35, a2= -2.93 and θ= 0.932. The 
tuning parameter is selected as λ = 1.5 and the controller parameters are obtained as Kc = 6.4564, τI = 6.4358, τD 

=1.4130, α1 = 0.6260, α2 = 0.1470, β1 = 0.2873, β2 = 0.0481 (Pade’s ½  order), Kc = 6.4285, τI = 6.4409, τD =1.4135, 
α = 0.4695, β = 0.1528 (Pade’s 1st  order), Kc = 6.4572, τI = 6.4357, τD = 1.4130, α1 = 0.4695, α2 = 0.0735, β1 = 
0.1301, β2 = 0.0240 (Pade’s 2nd  order). The set point weighting is considered as ε = 0.1. With these controller 
settings, the performances of the three approximations are compared by considering a unit step input at time t = 0 
and a negative step disturbance of magnitude 0.1 at t =30 sec respectively. Figure 14 shows the responses for perfect 
model parameters. From the responses one can observe that all the three approximations provide almost same 
performance. Perturbations of +20% in KP, +10% in θ, -20% in τ1, -10% in τ2 are considered and the corresponding 
responses are shown in Figure 15. Here Pade’s 1st order is going oscillator and Pade’s 2nd order is giving better 
performances than Pade’s ½ order. It can be observed that for higher perturbations in the process parameters, Pade’s 
2nd order gives better response. For quantitative comparison, the IAE values are considered and are given in Table 5. 
It can be observed that Pade’s 2nd order method gives lesser IAE values. 
For comparison with previous methods, Tan et al. [13] method is considered. For the proposed method Pade’s 2nd 
order is considered and compared with Tan et al [13] method by giving a unit step change in the set point and a unit 
negative step input in the load disturbance at t = 35 sec respectively. Figure 16 shows the responses for perfect 
model parameters. From the responses one can observe that the proposed method (Pade’s 2nd order approximation) 
gives better performance. Perturbations of +10% in KP, θ and -10% in τ1, τ2 are considered and the corresponding 
responses are shown in Figure 17.  For quantitative comparison, the IAE values are considered and are given in 
Table 6. It can be observed that Pade’s 2nd order method gives lesser IAE values than that of Tan et al [13]. 
 
Example-4:  

An USOPTD process with an integrator (eq. 27) is considered here. The process is given as 
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However, to use the proposed method, the process is considered for convince as 
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This in turn can be written as 
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Where KP = 100, a1 = 100, a2 = -101 and θ = 0.2. The tuning parameter is selected as λ = 1and  the controller 
parameters are obtained as Kc = 1.6274, τI = 3.1805, τD =1.7579, α1 = 0.1333, α2 = 0.0067, β1 = 0.0819, β2 = 0.0034 
(Pade’s ½  order), Kc = 1.622, τI = 3.1804, τD = 1.76, α = 0.1, β = 0.051 (Pade’s 1st  order), Kc = 1.6276, τI = 3.1805, 
τD =1.7578, α1 = 0.1, α2 = 0.0033, β1 = 0.0485, β2 = 0.0017 (Pade’s 2nd  order). The set point weighting is considered 
as ε = 0.1. With these controller settings, the performances of the three approximations are compared by considering 
a unit step input at time t = 0 and a negative step disturbance of magnitude 0.1 at t = 30 sec respectively. Figure 18 
shows the responses for perfect model parameters. From the responses one can observe that all the three 
approximations provide almost same performance. Perturbations of +30% in KP, θ, -30% in τ are considered and the 
corresponding responses are shown in Figure 19. Here also Pade’s 2nd order provides better performances. For 
quantitative comparison, the IAE values are considered and are given in Table 7. It can be observed that Pade’s 2nd 
order method gives lesser IAE values. For further analysis of robustness, robust stability is evaluated by using 
complementary sensitivity function for uncertainty of +50% in the time delay and is given in Figure 20. It can be 
observed that λ = 0.5 does not follow the robust stability condition where as λ = 1 and λ = 1.5 satisfy the robust 
stability condition (eq. 49) and selecting λ = 1.5 gives more robust control performances. In fact, it is true that 
robustness of the closed loop increases as the value of the tuning parameter is increased. 

V. CONCLUSIONS 

Different approximations for time delay terms are considered to derive the controller parameters in direct synthesis 
method for UFOPTD and USOPTD processes. Of all the approximations, Pade’s 2nd order approximation provides 
good nominal and robust closed loop performances. Systematic analysis has been carried out for selection of the 
tuning parameter using maximum sensitivity. Pade’s 2nd order approximation provides lower Ms values compared to 
other approximations. The proposed design using Pade’s 2nd order gives improved closed loop performances when 
compared to that of the recently reported methods in the literature and also provides low IAE values for nominal as 
well as perturbed conditions.  
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