
1Department of Computer Engineering, VIIT, Pune, Maharashtra, India

A SURVEY ON AUTOMATIC GENERATION OF TEST
CASES FROM UML DIAGRAMS

Nikhil Karve1 , Mayur Aitavdekar1, Mahima Chandan1, Prathamesh Wali1

I. INTRODUCTION

Software systems are getting more complex to build with increasing demand of automation. Systems that are
developed are then tested according to the user expectations. Testing is also done on the designs made before
execution so as to confirm the end product functionalities. Errors can be encountered while coding or while
deployment if user satisfaction is not fulfilled. Identification of errors and error management for a good software is
very important. The earlier the faults are detected the better the system turns out to be and fewer is the time wastage.
Also, defective software can’t be accepted as it may directly hamper variety of factors. For developing a software,
automated testing is necessary in terms of software quality. Models are an important requirement for automating a
system and to provide the required useful information. Use cases helps the requirements engineering process
whereas test cases provide assurance about the system’s quality. Generating test cases that take care of as much of
the system’s functionality as possible make the system robust and an error free software for deployment. In model-
based testing approaches checking functionalities and features of software is done before execution, it is actually
done while designing the software. While talking about the designing phase, the advantages of UML diagrams is the
first thing one thinks about. UML also known as the UML diagrams are the standard way of representing any
software. There are diagrams in the UML that show the flow of the system, that showcase the functionalities, that
show the dependencies and the diagrams that tell everything about the system. As the UML diagram is the input to
the coding phase, flaws in the design make it a very difficult task for the developer to code the software and results
in a faulty software. With the increase in input parameters it becomes hard to generate test cases and so research on
these methods was done, many tools were made for generating test cases which had many different approaches.
Coverage criteria of various algorithms are different which leads to less accuracy in the process of testing.

II. LITERATURE SURVEY

Usually a test case is first generated and then it is selected after which minimization of test case takes place and then
test cases is prioritized and finally is evaluated. The very first phase is the most important and requires most of the
efforts called the Test Case Generation. This part of our paper speaks about the waterfall model of software
development life cycle, the process of software testing, the process of test case generation and all research related to
techniques used generating test cases.

1. Techniques used for test case generation-

International Journal of Latest Trends in Engineering and Technology
Vol.(16)Issue(1), pp.038-043

DOI: http://dx.doi.org/10.21172/1.162.06
e-ISSN:2278-621X

Abstract: When building a high-quality software, the main focus is on the testing phase from the software development life
cycle. By various ways we can test a system under development but many of these consume a lot of time and effort and so
research on approaches that automate this process of testing and that consume fewer human efforts is focused on, in this paper.
ratio (4.79) was found highest under T2. Colour propertiesi.e. L, a and b value of colour were found highest under T1.

Keywords: Software testing, test cases, UML diagrams, coverage criteria, software engineering.

A Survey On Automatic Generation Of Test Cases From Uml Diagrams 039

It actually is the total count of test cases that affect the money, time invested and the human effort required.
Generating Test cases being the most crucial operation in the process of testing. The bigger picture of classification
of Test case generation is requirement related methods, techniques dependent on specification, techniques that are
related to diagram specially unified modeling language, source code-based techniques and genetic ways. A couple of
test cases are determined depending on the basis of previous considerations including fault distribution covering
different coverage criteria in the Random test case generation approaches. Covering a particular section, statement
or a functionality is the purpose of goal-oriented test case generation approach. Testing the goal is the primary
objective here and not the execution path. The domain of software engineering uses UML as a modeling language
for a general way of representation. There are two different ways of representing views of a system model:
Structural and Behavioral. In structural system model objects, attributes, dependencies and operations are
emphasized. The static way of representing view comprises of class diagrams and composite diagrams like structure
diagram. Whereas, when the dynamic behavior is considered where collaborations among the objects and alterations
in the states of the objects is considered the system model is called Behavioral view.

Basically, the most basic five parts in the waterfall software development life cycle (SDLC), which are:
Requirements phase, Designing phase, Implementation phase, Testing phase, Maintenance phase. The motive of
testing phase is to find errors. The intent of detecting faults includes checking that the particular software meets the
requirements and that it fulfills the capability of performance. It assures the developer and user about its quality by
finely seeing the way the output is derived of a software system to test it whether it worked as required and to
identify if any errors or problems.

A. Specification-Based Techniques

It is one of the fundamental techniques of test case generation in which requirements gathering and specification play
very important role. As we are considering software development life cycle, we must specify some formal
requirements and specifications. The formal requirements are very important as they are used to generate test cases in
this specification-based technique. With design and implementation of software, we can get required results for test
cases. The formal requirement specification document is used as base for checking various outputs which reduces
major efforts in testing. Specification and tests have very strong relationship between each other which helps us to
find faults and it simplifies the testing process. It also helps to discover the problem with specifications. We can get
the benefits from this technique if we do this step at early stage in software development process which will
ultimately save the time and resources of the company.

B. Sketch Diagram-Based Techniques

This technique contains variety of methods of generating test cases from UML diagrams [19], [20]. We can shift the
testing in the earlier part of the development and also, we can generate the test cases that are not dependent on any
particular model. These are few important advantages of sketch-based diagram techniques. This technique has been
widely used in traditional and web-based applications. But in recent times, the complexity of web-based applications
are constantly increasing day by day which means we need more robust test case generation techniques to test such
kind of complex web based systems.

C. Source Code-Based Techniques

Prof. N. k. Sharma and prof. Divya Saxena conducted survey in recent times on such kind of techniques. Control flow
graph information is used in such kind of techniques for identification of paths which need to be covered during the
traversal of graph and also generation of correct test cases for these identified paths. Generally, one can easily derive
the control flow graph from source code.

D. Scenario Based

Scenario based test case generation, model-based test case generation and genetic based test case generation these are
the main approaches of test case generation systems. Prof. Baikutha Narayan Biswal presented a paper 'A Novel
Approach for Scenario-Based Test Case Generation'. For complex transactions this technique works very well
especially when we need to understand how program will work when experienced use uses it. In the recent paper [9],
researchers also worked on approach for activity diagram where they focused on coverage criteria. Their approach is
very much useful to solve the problem of looping faults. In their second approach, the algorithm can actually detect
the location of fault which can ultimately makes the task of testers easy, saves the time of human and efforts too.

Nikhil Karve, Mayur Aitavdekar, Mahima Chandan, Prathamesh Wali 040

E. Model Based Test Case Generation

Model based test case generation is challenging and also many researches involve achieving optimal sets of test cases.
In the above stated paper [11] they proposed a model-based approach, which motivates developers to improve their
design and quality and also finding mistakes in the implementations at a preliminary stage reducing development
time. They also stated that it is possible to develop automatic tools using their approach. Used sequence diagrams to
generate test cases. They traversed sequence diagrams and conditional predicates were selected and those conditional
predicates are transformed to source code. Then, the test cases are generated from the source code-based technique.
From the sequence diagram, they perform a DFS to select the associated predicates in the generated list. They have
generated test predicate conditions from UML sequence diagrams, which are later used to generate test cases. Model
based techniques identify respective test cases for the software with respect to the UML diagrams such as activity,
state machine diagram etc. By symbolic execution, static path testing is done. Goal-oriented techniques identify test
cases covering a selected goal such as a statement or branch.

F. Genetic-Based Test Case Generation

Swain, R. Panthi [18] proposed an automatic generation of test cases for state chart diagrams, which they used both
model based and Genetic Algorithm in the later part. Initially the UML diagram is converted to EFSM (Extended
Finite State Machine) which usually satisfies provided guard conditions. Later this extended FSM was converted to an
extended control flow graph. For generating workable test cases from test sequence data, this genetic algorithm is
used. Automatic test case generation using Genetic Algorithm approach mostly uses the data mining approach.
Authors of paper [12] applied crossover technique on the class diagram and the depth first search (DFS) algorithm is
used for traversal. When a tree structure approach is considered together with a genetic algorithm then it shows that it
has the ability to show at unit level about 80% faults in which 8% more faults at integration level. Genetic algorithms
were integrated with mutation testing which showed nearly 80% of effectiveness.

G. Critical path method

T.Y. Chen et al proposed a critical path method for generation of test cases. Formation of test cases takes place for the
critical path with the help of refinement of functional choices which is very helpful to the software tester. The success
criterion is highly dependent on the predicted and the real results for a specific test and the gap between them shows
us the error which helps to find the accuracy of the software.

H. Code based Test Generation

Straightforwardly generated test cases from code will be code-based test case generation. This principally used
strategy is considered for existing dependent tests on adequate test criteria. This technique bolsters testing strategies
like regression to diminish the size of test suite or sort tests depending on priority.

I. Graphical User Interface based Test Case Generation Technique

Imran Ali Qureshi and Aamer Nadeem introduced completely an overview of test case generation strategies that are
fundamentally helpful for Graphical User Interface based test case generation techniques.

1. The very first method of generating test cases for Graphical User Interface obligations is a method where
complete interaction sequence is considered.

2. The second strategy for generation of test cases depends on Graphical User Interface is by limited state based
testing and examination of graphical User Interface.

3. The third strategy for generating test cases through Graphical User Interface is by characterizing experiment for
Graphical User Interface testing.

4. The fourth strategy/method of test case generation is accomplished with the assistance of a model driven
methodology.

5. The fifth strategy for generating test cases is finished by achieving cost-efficient approach for based on model
technique for Graphical User Interface testing.

6. Another technique for generating test cases is a model-based methodology for testing Graphical User Interface
utilizing various leveled predicate change nets.

A Survey On Automatic Generation Of Test Cases From Uml Diagrams 041

 7. The next method of generating test cases is from the Graphical User Interface Model itself.

8. The last technique for generating test cases is through the use of Graphical User Interface dynamic state as
criticism to generate test cases.

The paper likewise portrays all above test case generation techniques for a wide range of Graphical User Interface
applications and presents a improved picture about the usefulness of every method and further presented a table for
correlation wherein every method has been contrasted and different systems by utilizing some assessment parameters.

J. Genetic Algorithm

The latest research is on test case generation, reduction and assessment utilizing Genetic Algorithm. While
considering test case generation from State chart Diagrams of Unified Modeling Language diagrams most extreme
work is finished utilizing Genetic Algorithm. A Genetic Algorithm is system that goes under advancement method
which can be applied to different issues. It utilizes natural selection strategy, where the best arrangement endures. The
Genetic calculation essentially requires two of the most significant segments that are

 (a) An encoding used to present an answer of the arrangement space

 (b) A function that determines the fitness and goodness of possible solutions.

III. SURVEY RESULT

Author(s) Input model Method

Supaporn Kansomkeat and
Wanchai.R

 State chart model Parsing using TFG and mutation on
analysis

J. Offutt State chart model Specification test

S. Gnesi

State chart Input/output systems random
test selection

Lionel Briand State chart model Normalization operation and transition of
guard conditon

Li and Lam State chart model Ant colony optimization

Santiago State chart model Condado

Murthy State chart model Extended state chart model

Ali Collaboration diagrams Collaboration test model

Santiago State
Charts

unique IO
methods

Kosindrdecha and Daengdej State chart Sketch Diagram based

Swain State chart
and activity chart

Mutation analysis and System Design

Shirole State chart model Genetic algorithm

Nikhil Karve, Mayur Aitavdekar, Mahima Chandan, Prathamesh Wali 042

Li State chart model Euler circuit algorithm

Swain State chart model Depth first search,
Model J unit

Swain

State chart model Test generation and Minimization for
O-O software with state charts

Swain

State chart model Generation and minimization of test cases
from State Charts

Chimisliu and Wotawa State chart model

V Panthi, Durga P Mohopatra Sequence Diagram DFS and Selection of Predicate from
fuction

P Satish, Arinjita P, K Rangarajan Sequence Diagram CTDM Parsing

A.V.K. Shanthi1 and G. Mohan
Kumar

Sequence Diagram Genetic Algorithm

E Cartaxo, F Neto and P Machado Sequence Diagram and LTS

TFG

Abinash Tripathi and Anirabn
Mitra

Sequence and Activity Diagram Dfs and System Graph

Khandai, M., Acharya, A. A., &
Mohapatra, D. P

Sequence Diagram MDG and Selection of predicates

P Samuel, Sahoo and R Mall Sequence Diagram MDG and Selection of predicates .

Mahesh S, Suthar. A & Kumar Sequence Diagram Genetic Algorithm

Fan, X., Shu, J., Liu, L., &
Liang, Q.

Activity Diagram Functional Decomposition.

Mingsong, C., Xiaokang, Q. &
Xuandong, L.

Activity Diagram Random generation of test cases using
Java.

Thomas, A., & Kimball, J. Activity Diagram Interface behaviour descriptions and edge
value analysis

Xu, D., Zhu, G., Lan, Z. & Li, J. Activity Diagram Model based test case generation

Oluwagbemi, O., & Asmuni, H. Activity Diagram Activity flow tree

Samuel, P., Mall, R., & Bothra, A. Activity Diagram Data flow logic, functional minimisation
technique

Hettab, A., Kerkouche, E., &
Chaoui, A.

Activity Diagram

Table 1: Research work completed by researchers on different UML Diagrams and getting automatic test cases.

IV.CONCLUSION

Our paper discusses different ways or research done in the field of automatic test case generation from UML
diagrams. Various algorithms and methods that are used in generating a test case for testing are Search Based
Software Test case generation, Finite state Machine, Model Based Testing are read and literature survey for UML

A Survey On Automatic Generation Of Test Cases From Uml Diagrams 043

diagrams which is necessary for virtualization of the system. Also, according to our paper the main focus is
primarily on UML related testing techniques. Other diagrams could be studied in detail for future work. Coverage
criteria can yet be maximized and make testing more efficient.

REFERENCES

[1] Fan, X., Shu, J., Liu, L., & Liang, Q. (2009). Test Case Generation from UML Sub activity and Activity Diagram. 2009 Second

International Symposium on Electronic Commerce and Security. doi:10.1109/isecs.2009.160
[2] Mingsong, C., Xiaokang, Q., & Xuandong, L. (2006). Automatic test case generation for UML activity diagrams. Proceedings of the 2006

international workshop on Automation of software test - AST '06. doi:10.1145/1138929.1138931
[3] Thomas, A., & Kimball, J. (2017). A prototype tool for generating and executing test cases from UNIFIED MODELING LANGUAGE-

based interface behavior descriptions. 2017 IEEE 28th Annual Software Technology Conference (STC). doi:10.1109/stc.2017.8234458
[4] Xu, D., Zhu, G., Lan, Z., & Li, J. (2014). A novel systematic approach to automatic test scenario generation from UML activity

diagrams. Advanced Computer Control. doi:10.2495/icacc130831
[5] Oluwagbemi, O., & Asmuni, H. (2015). AUTOMATIC GENERATION OF TEST CASES FROM ACTIVITY DIAGRAMS FOR UML

BASED TESTING (UBT). Jurnal Teknologi, 77(13). doi:10.11113/jt.v77.6358
[6] Samuel, P., Mall, R., & Bothra, A. (2008). Automatic test case generation using UML (UNIFIED MODELING LANGUAGE) state

diagrams. IET Software, 2(2), 79. doi:10.1049/iet-sen:20060061
[7] Hettab, A., Kerkouche, E., & Chaoui, A. (2008). A Graph Transformation Approach for Automatic Test Cases Generation from UML

Activity Diagrams. Proceedings of the Eighth International C* Conference on Computer Science & Software Engineering - C3S2E '15.
doi:10.1145/2790798.2790801

[8] Satish, P., Paul, A., & Rangarajan, K. (2014). Extracting the Combinatorial Test Parameters and Values from UML Sequence Diagrams.
2014 IEEE Seventh International Conference on Software Testing, Verification and Validation Workshops. doi:10.1109/icstw.2014.11

[9] Sarma, M., Kundu, D., & Mall, R. (2007). Automatic Test Case Generation from UML Sequence Diagram. 15th International Conference
on Advanced Computing and Communications (ADCOM 2007). doi:10.1109/adcom.2007.68

[10] Khandai, M., Acharya, A. A., & Mohapatra, D. P. (2011). A novel approach of test case generation for concurrent systems using UML
Sequence Diagram. 2011 3rd International Conference on Electronics Computer Technology. doi:10.1109/icectech.2011.5941581

[11] Dahlweid, M., Brauer, J., & Peleska, J. (2015). Model-Based Testing: Automatic Generation of Test Cases, Test Data and Test Procedures
from SysML Models. SAE Technical Paper Series. doi:10.4271/2015-01-2553

[12] Carballa, D., & Castro, L. (2016). Automatic generation of UML sequence diagrams from test counterexamples. Proceedings of the 15th
International Workshop on Erlang - Erlang 2016. doi:10.1145/2975969.2975977

[13] Nayak, A., & Samanta, D. (2012). Synthesis of Test Scenarios Using UML Sequence Diagrams. ISRN Software Engineering, 2012, 1-22.
doi:10.5402/2012/324054

[14] Tran, H. (2001). Test Generation using Model Checking. Paper presented at Proceeding Conference on Automated Verification.
[15] Shirole, M., Suthar, A., & Kumar, R. (2011). Generation of improved test cases from UML state diagram using genetic algorithm.

Proceedings of the 4th India Software Engineering Conference on - ISEC '11. doi:10.1145/1953355.195337

[16] Chimisliu, V., & Wotawa, F. (2013). Using Dependency Relations to Improve Test Case Generation from UML Statecharts. 2013 IEEE
37th Annual Computer Software and Applications Conference Workshops. doi:10.1109/compsacw.2013.2

[17] Gnesi, S., Latella, D., & Massink, M. (n.d.). Formal test-case generation for UML state charts. Proceedings. Ninth IEEE International
Conference on Engineering of Complex Computer Systems. doi:10.1109/iceccs.2004.1310906

[18] Modeling and Verification Using UML Statecharts. (2006). doi:10.1016/b978-0-7506-7949-7.x5000-4
[19] Prasanna, M., & Chandran, K. R. (2011). Automated Test Case Generation for Object Oriented Systems Using UML Object

Diagrams. High Performance Architecture and Grid Computing, 417-423. doi:10.1007/978-3-642-22577-2_56
[20] Chevalley, P., & Thevenod-Fosse, P. (n.d.). Automated generation of statistical test cases from UML state diagrams. 25th Annual

International Computer Software and Applications Conference. COMPSAC 2001. doi:10.1109/cmpsac.2001.960618
[21] N. K. Sharma, Divya Saxena, 2013, Study Of Approaches For Generating Automated Test Cases By UML Diagrams, INTERNATIONAL

JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 02, Issue 06 (June 2013)
[22] Goodenough, J. B., & Gerhart, S. L. (1975). Toward a theory of test data selection. Proceedings of the international conference on Reliable

software -. doi:10.1145/800027.808473
[23] McMinn, P. (2004). Search-based software test data generation: a survey. Software Testing, Verification and Reliability, 14(2), 105-156.

doi:10.1002/stvr.294
[24] Swain, R. K. (2012). Minimal Testcase Generation for Object-Oriented Software with State Charts. International Journal of Software

Engineering & Applications, 3(4), 39-59. doi:10.5121/ijsea.2012.3404
[25] Korel, B., Tahat, L., & Harman, M. (2005). Test prioritization using system models. 21st IEEE International Conference on Software

Maintenance (ICSM'05). doi:10.1109/icsm.2005.87
[26] Dr. V. Chandra Prakash, S. Tatale, V. Kondhalkar, L. Bewoor, “A Critical Review on Automated Test Case Generation for Conducting

Combinatorial Testing Using Particle Swarm Optimization”, International Journal of Engineering & Technology, June 2018

